Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
2 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
3 |
|
simpl |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> K e. Poset ) |
4 |
1 2 3
|
joindmss |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> dom ( join ` K ) C_ ( ( Base ` K ) X. ( Base ` K ) ) ) |
5 |
|
relxp |
|- Rel ( ( Base ` K ) X. ( Base ` K ) ) |
6 |
5
|
a1i |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> Rel ( ( Base ` K ) X. ( Base ` K ) ) ) |
7 |
|
opelxp |
|- ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) <-> ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) ) |
8 |
|
vex |
|- x e. _V |
9 |
|
vex |
|- y e. _V |
10 |
8 9
|
prss |
|- ( ( x e. ( Base ` K ) /\ y e. ( Base ` K ) ) <-> { x , y } C_ ( Base ` K ) ) |
11 |
7 10
|
sylbb |
|- ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> { x , y } C_ ( Base ` K ) ) |
12 |
|
prex |
|- { x , y } e. _V |
13 |
12
|
elpw |
|- ( { x , y } e. ~P ( Base ` K ) <-> { x , y } C_ ( Base ` K ) ) |
14 |
11 13
|
sylibr |
|- ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> { x , y } e. ~P ( Base ` K ) ) |
15 |
|
eleq2 |
|- ( dom ( lub ` K ) = ~P ( Base ` K ) -> ( { x , y } e. dom ( lub ` K ) <-> { x , y } e. ~P ( Base ` K ) ) ) |
16 |
14 15
|
syl5ibr |
|- ( dom ( lub ` K ) = ~P ( Base ` K ) -> ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> { x , y } e. dom ( lub ` K ) ) ) |
17 |
16
|
adantl |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> { x , y } e. dom ( lub ` K ) ) ) |
18 |
|
eqid |
|- ( lub ` K ) = ( lub ` K ) |
19 |
8
|
a1i |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> x e. _V ) |
20 |
9
|
a1i |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> y e. _V ) |
21 |
18 2 3 19 20
|
joindef |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> ( <. x , y >. e. dom ( join ` K ) <-> { x , y } e. dom ( lub ` K ) ) ) |
22 |
17 21
|
sylibrd |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> <. x , y >. e. dom ( join ` K ) ) ) |
23 |
6 22
|
relssdv |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> ( ( Base ` K ) X. ( Base ` K ) ) C_ dom ( join ` K ) ) |
24 |
4 23
|
eqssd |
|- ( ( K e. Poset /\ dom ( lub ` K ) = ~P ( Base ` K ) ) -> dom ( join ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) |
25 |
24
|
ex |
|- ( K e. Poset -> ( dom ( lub ` K ) = ~P ( Base ` K ) -> dom ( join ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
26 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
27 |
|
simpl |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> K e. Poset ) |
28 |
1 26 27
|
meetdmss |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> dom ( meet ` K ) C_ ( ( Base ` K ) X. ( Base ` K ) ) ) |
29 |
5
|
a1i |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> Rel ( ( Base ` K ) X. ( Base ` K ) ) ) |
30 |
|
eleq2 |
|- ( dom ( glb ` K ) = ~P ( Base ` K ) -> ( { x , y } e. dom ( glb ` K ) <-> { x , y } e. ~P ( Base ` K ) ) ) |
31 |
14 30
|
syl5ibr |
|- ( dom ( glb ` K ) = ~P ( Base ` K ) -> ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> { x , y } e. dom ( glb ` K ) ) ) |
32 |
31
|
adantl |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> { x , y } e. dom ( glb ` K ) ) ) |
33 |
|
eqid |
|- ( glb ` K ) = ( glb ` K ) |
34 |
8
|
a1i |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> x e. _V ) |
35 |
9
|
a1i |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> y e. _V ) |
36 |
33 26 27 34 35
|
meetdef |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> ( <. x , y >. e. dom ( meet ` K ) <-> { x , y } e. dom ( glb ` K ) ) ) |
37 |
32 36
|
sylibrd |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> ( <. x , y >. e. ( ( Base ` K ) X. ( Base ` K ) ) -> <. x , y >. e. dom ( meet ` K ) ) ) |
38 |
29 37
|
relssdv |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> ( ( Base ` K ) X. ( Base ` K ) ) C_ dom ( meet ` K ) ) |
39 |
28 38
|
eqssd |
|- ( ( K e. Poset /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> dom ( meet ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) |
40 |
39
|
ex |
|- ( K e. Poset -> ( dom ( glb ` K ) = ~P ( Base ` K ) -> dom ( meet ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
41 |
25 40
|
anim12d |
|- ( K e. Poset -> ( ( dom ( lub ` K ) = ~P ( Base ` K ) /\ dom ( glb ` K ) = ~P ( Base ` K ) ) -> ( dom ( join ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) /\ dom ( meet ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
42 |
41
|
imdistani |
|- ( ( K e. Poset /\ ( dom ( lub ` K ) = ~P ( Base ` K ) /\ dom ( glb ` K ) = ~P ( Base ` K ) ) ) -> ( K e. Poset /\ ( dom ( join ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) /\ dom ( meet ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
43 |
1 18 33
|
isclat |
|- ( K e. CLat <-> ( K e. Poset /\ ( dom ( lub ` K ) = ~P ( Base ` K ) /\ dom ( glb ` K ) = ~P ( Base ` K ) ) ) ) |
44 |
1 2 26
|
islat |
|- ( K e. Lat <-> ( K e. Poset /\ ( dom ( join ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) /\ dom ( meet ` K ) = ( ( Base ` K ) X. ( Base ` K ) ) ) ) ) |
45 |
42 43 44
|
3imtr4i |
|- ( K e. CLat -> K e. Lat ) |