| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clatlem.b |
|- B = ( Base ` K ) |
| 2 |
|
clatlem.u |
|- U = ( lub ` K ) |
| 3 |
|
clatlem.g |
|- G = ( glb ` K ) |
| 4 |
|
simpl |
|- ( ( K e. CLat /\ S C_ B ) -> K e. CLat ) |
| 5 |
1
|
fvexi |
|- B e. _V |
| 6 |
5
|
elpw2 |
|- ( S e. ~P B <-> S C_ B ) |
| 7 |
6
|
biimpri |
|- ( S C_ B -> S e. ~P B ) |
| 8 |
7
|
adantl |
|- ( ( K e. CLat /\ S C_ B ) -> S e. ~P B ) |
| 9 |
1 2 3
|
isclat |
|- ( K e. CLat <-> ( K e. Poset /\ ( dom U = ~P B /\ dom G = ~P B ) ) ) |
| 10 |
9
|
biimpi |
|- ( K e. CLat -> ( K e. Poset /\ ( dom U = ~P B /\ dom G = ~P B ) ) ) |
| 11 |
10
|
adantr |
|- ( ( K e. CLat /\ S C_ B ) -> ( K e. Poset /\ ( dom U = ~P B /\ dom G = ~P B ) ) ) |
| 12 |
11
|
simprld |
|- ( ( K e. CLat /\ S C_ B ) -> dom U = ~P B ) |
| 13 |
8 12
|
eleqtrrd |
|- ( ( K e. CLat /\ S C_ B ) -> S e. dom U ) |
| 14 |
1 2 4 13
|
lubcl |
|- ( ( K e. CLat /\ S C_ B ) -> ( U ` S ) e. B ) |
| 15 |
11
|
simprrd |
|- ( ( K e. CLat /\ S C_ B ) -> dom G = ~P B ) |
| 16 |
8 15
|
eleqtrrd |
|- ( ( K e. CLat /\ S C_ B ) -> S e. dom G ) |
| 17 |
1 3 4 16
|
glbcl |
|- ( ( K e. CLat /\ S C_ B ) -> ( G ` S ) e. B ) |
| 18 |
14 17
|
jca |
|- ( ( K e. CLat /\ S C_ B ) -> ( ( U ` S ) e. B /\ ( G ` S ) e. B ) ) |