Step |
Hyp |
Ref |
Expression |
1 |
|
clatlem.b |
|- B = ( Base ` K ) |
2 |
|
clatlem.u |
|- U = ( lub ` K ) |
3 |
|
clatlem.g |
|- G = ( glb ` K ) |
4 |
|
simpl |
|- ( ( K e. CLat /\ S C_ B ) -> K e. CLat ) |
5 |
1
|
fvexi |
|- B e. _V |
6 |
5
|
elpw2 |
|- ( S e. ~P B <-> S C_ B ) |
7 |
6
|
biimpri |
|- ( S C_ B -> S e. ~P B ) |
8 |
7
|
adantl |
|- ( ( K e. CLat /\ S C_ B ) -> S e. ~P B ) |
9 |
1 2 3
|
isclat |
|- ( K e. CLat <-> ( K e. Poset /\ ( dom U = ~P B /\ dom G = ~P B ) ) ) |
10 |
9
|
biimpi |
|- ( K e. CLat -> ( K e. Poset /\ ( dom U = ~P B /\ dom G = ~P B ) ) ) |
11 |
10
|
adantr |
|- ( ( K e. CLat /\ S C_ B ) -> ( K e. Poset /\ ( dom U = ~P B /\ dom G = ~P B ) ) ) |
12 |
11
|
simprld |
|- ( ( K e. CLat /\ S C_ B ) -> dom U = ~P B ) |
13 |
8 12
|
eleqtrrd |
|- ( ( K e. CLat /\ S C_ B ) -> S e. dom U ) |
14 |
1 2 4 13
|
lubcl |
|- ( ( K e. CLat /\ S C_ B ) -> ( U ` S ) e. B ) |
15 |
11
|
simprrd |
|- ( ( K e. CLat /\ S C_ B ) -> dom G = ~P B ) |
16 |
8 15
|
eleqtrrd |
|- ( ( K e. CLat /\ S C_ B ) -> S e. dom G ) |
17 |
1 3 4 16
|
glbcl |
|- ( ( K e. CLat /\ S C_ B ) -> ( G ` S ) e. B ) |
18 |
14 17
|
jca |
|- ( ( K e. CLat /\ S C_ B ) -> ( ( U ` S ) e. B /\ ( G ` S ) e. B ) ) |