Metamath Proof Explorer


Theorem clatlubcl2

Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 13-Sep-2018)

Ref Expression
Hypotheses clatlubcl.b
|- B = ( Base ` K )
clatlubcl.u
|- U = ( lub ` K )
Assertion clatlubcl2
|- ( ( K e. CLat /\ S C_ B ) -> S e. dom U )

Proof

Step Hyp Ref Expression
1 clatlubcl.b
 |-  B = ( Base ` K )
2 clatlubcl.u
 |-  U = ( lub ` K )
3 1 fvexi
 |-  B e. _V
4 3 elpw2
 |-  ( S e. ~P B <-> S C_ B )
5 4 biimpri
 |-  ( S C_ B -> S e. ~P B )
6 5 adantl
 |-  ( ( K e. CLat /\ S C_ B ) -> S e. ~P B )
7 eqid
 |-  ( glb ` K ) = ( glb ` K )
8 1 2 7 isclat
 |-  ( K e. CLat <-> ( K e. Poset /\ ( dom U = ~P B /\ dom ( glb ` K ) = ~P B ) ) )
9 simprl
 |-  ( ( K e. Poset /\ ( dom U = ~P B /\ dom ( glb ` K ) = ~P B ) ) -> dom U = ~P B )
10 8 9 sylbi
 |-  ( K e. CLat -> dom U = ~P B )
11 10 adantr
 |-  ( ( K e. CLat /\ S C_ B ) -> dom U = ~P B )
12 6 11 eleqtrrd
 |-  ( ( K e. CLat /\ S C_ B ) -> S e. dom U )