Metamath Proof Explorer


Theorem cldcls

Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007)

Ref Expression
Assertion cldcls
|- ( S e. ( Clsd ` J ) -> ( ( cls ` J ) ` S ) = S )

Proof

Step Hyp Ref Expression
1 cldrcl
 |-  ( S e. ( Clsd ` J ) -> J e. Top )
2 eqid
 |-  U. J = U. J
3 2 cldss
 |-  ( S e. ( Clsd ` J ) -> S C_ U. J )
4 2 clsval
 |-  ( ( J e. Top /\ S C_ U. J ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } )
5 1 3 4 syl2anc
 |-  ( S e. ( Clsd ` J ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } )
6 intmin
 |-  ( S e. ( Clsd ` J ) -> |^| { x e. ( Clsd ` J ) | S C_ x } = S )
7 5 6 eqtrd
 |-  ( S e. ( Clsd ` J ) -> ( ( cls ` J ) ` S ) = S )