Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cldcls | |- ( S e. ( Clsd ` J ) -> ( ( cls ` J ) ` S ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldrcl | |- ( S e. ( Clsd ` J ) -> J e. Top ) |
|
| 2 | eqid | |- U. J = U. J |
|
| 3 | 2 | cldss | |- ( S e. ( Clsd ` J ) -> S C_ U. J ) |
| 4 | 2 | clsval | |- ( ( J e. Top /\ S C_ U. J ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 5 | 1 3 4 | syl2anc | |- ( S e. ( Clsd ` J ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 6 | intmin | |- ( S e. ( Clsd ` J ) -> |^| { x e. ( Clsd ` J ) | S C_ x } = S ) |
|
| 7 | 5 6 | eqtrd | |- ( S e. ( Clsd ` J ) -> ( ( cls ` J ) ` S ) = S ) |