| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lpfval.1 |  |-  X = U. J | 
						
							| 2 | 1 | iscld3 |  |-  ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( cls ` J ) ` S ) = S ) ) | 
						
							| 3 | 1 | clslp |  |-  ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = ( S u. ( ( limPt ` J ) ` S ) ) ) | 
						
							| 4 | 3 | eqeq1d |  |-  ( ( J e. Top /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) = S <-> ( S u. ( ( limPt ` J ) ` S ) ) = S ) ) | 
						
							| 5 |  | ssequn2 |  |-  ( ( ( limPt ` J ) ` S ) C_ S <-> ( S u. ( ( limPt ` J ) ` S ) ) = S ) | 
						
							| 6 | 4 5 | bitr4di |  |-  ( ( J e. Top /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) = S <-> ( ( limPt ` J ) ` S ) C_ S ) ) | 
						
							| 7 | 2 6 | bitrd |  |-  ( ( J e. Top /\ S C_ X ) -> ( S e. ( Clsd ` J ) <-> ( ( limPt ` J ) ` S ) C_ S ) ) |