Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006) (Revised by Stefan O'Rear, 22-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | iscld.1 | |- X = U. J |
|
Assertion | cldopn | |- ( S e. ( Clsd ` J ) -> ( X \ S ) e. J ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscld.1 | |- X = U. J |
|
2 | cldrcl | |- ( S e. ( Clsd ` J ) -> J e. Top ) |
|
3 | 1 | iscld | |- ( J e. Top -> ( S e. ( Clsd ` J ) <-> ( S C_ X /\ ( X \ S ) e. J ) ) ) |
4 | 3 | simplbda | |- ( ( J e. Top /\ S e. ( Clsd ` J ) ) -> ( X \ S ) e. J ) |
5 | 2 4 | mpancom | |- ( S e. ( Clsd ` J ) -> ( X \ S ) e. J ) |