Metamath Proof Explorer


Theorem cldopn

Description: The complement of a closed set is open. (Contributed by NM, 5-Oct-2006) (Revised by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Hypothesis iscld.1
|- X = U. J
Assertion cldopn
|- ( S e. ( Clsd ` J ) -> ( X \ S ) e. J )

Proof

Step Hyp Ref Expression
1 iscld.1
 |-  X = U. J
2 cldrcl
 |-  ( S e. ( Clsd ` J ) -> J e. Top )
3 1 iscld
 |-  ( J e. Top -> ( S e. ( Clsd ` J ) <-> ( S C_ X /\ ( X \ S ) e. J ) ) )
4 3 simplbda
 |-  ( ( J e. Top /\ S e. ( Clsd ` J ) ) -> ( X \ S ) e. J )
5 2 4 mpancom
 |-  ( S e. ( Clsd ` J ) -> ( X \ S ) e. J )