Metamath Proof Explorer


Theorem cldval

Description: The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis cldval.1
|- X = U. J
Assertion cldval
|- ( J e. Top -> ( Clsd ` J ) = { x e. ~P X | ( X \ x ) e. J } )

Proof

Step Hyp Ref Expression
1 cldval.1
 |-  X = U. J
2 1 topopn
 |-  ( J e. Top -> X e. J )
3 pwexg
 |-  ( X e. J -> ~P X e. _V )
4 rabexg
 |-  ( ~P X e. _V -> { x e. ~P X | ( X \ x ) e. J } e. _V )
5 2 3 4 3syl
 |-  ( J e. Top -> { x e. ~P X | ( X \ x ) e. J } e. _V )
6 unieq
 |-  ( j = J -> U. j = U. J )
7 6 1 eqtr4di
 |-  ( j = J -> U. j = X )
8 7 pweqd
 |-  ( j = J -> ~P U. j = ~P X )
9 7 difeq1d
 |-  ( j = J -> ( U. j \ x ) = ( X \ x ) )
10 eleq12
 |-  ( ( ( U. j \ x ) = ( X \ x ) /\ j = J ) -> ( ( U. j \ x ) e. j <-> ( X \ x ) e. J ) )
11 9 10 mpancom
 |-  ( j = J -> ( ( U. j \ x ) e. j <-> ( X \ x ) e. J ) )
12 8 11 rabeqbidv
 |-  ( j = J -> { x e. ~P U. j | ( U. j \ x ) e. j } = { x e. ~P X | ( X \ x ) e. J } )
13 df-cld
 |-  Clsd = ( j e. Top |-> { x e. ~P U. j | ( U. j \ x ) e. j } )
14 12 13 fvmptg
 |-  ( ( J e. Top /\ { x e. ~P X | ( X \ x ) e. J } e. _V ) -> ( Clsd ` J ) = { x e. ~P X | ( X \ x ) e. J } )
15 5 14 mpdan
 |-  ( J e. Top -> ( Clsd ` J ) = { x e. ~P X | ( X \ x ) e. J } )