Description: Alternate definition of membership when the member is a set. (Contributed by NM, 18-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clel2.1 | |- A e. _V |
|
Assertion | clel2 | |- ( A e. B <-> A. x ( x = A -> x e. B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clel2.1 | |- A e. _V |
|
2 | clel2g | |- ( A e. _V -> ( A e. B <-> A. x ( x = A -> x e. B ) ) ) |
|
3 | 1 2 | ax-mp | |- ( A e. B <-> A. x ( x = A -> x e. B ) ) |