Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clel3.1 | |- B e. _V |
|
Assertion | clel3 | |- ( A e. B <-> E. x ( x = B /\ A e. x ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clel3.1 | |- B e. _V |
|
2 | clel3g | |- ( B e. _V -> ( A e. B <-> E. x ( x = B /\ A e. x ) ) ) |
|
3 | 1 2 | ax-mp | |- ( A e. B <-> E. x ( x = B /\ A e. x ) ) |