Description: Alternate definition of membership in a set. (Contributed by NM, 18-Aug-1993)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clel3.1 | |- B e. _V | |
| Assertion | clel3 | |- ( A e. B <-> E. x ( x = B /\ A e. x ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clel3.1 | |- B e. _V | |
| 2 | clel3g | |- ( B e. _V -> ( A e. B <-> E. x ( x = B /\ A e. x ) ) ) | |
| 3 | 1 2 | ax-mp | |- ( A e. B <-> E. x ( x = B /\ A e. x ) ) |