Description: Alternate definition of membership in a set. (Contributed by NM, 13-Aug-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | clel3g | |- ( B e. V -> ( A e. B <-> E. x ( x = B /\ A e. x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 | |- ( x = B -> ( A e. x <-> A e. B ) ) |
|
2 | 1 | ceqsexgv | |- ( B e. V -> ( E. x ( x = B /\ A e. x ) <-> A e. B ) ) |
3 | 2 | bicomd | |- ( B e. V -> ( A e. B <-> E. x ( x = B /\ A e. x ) ) ) |