Metamath Proof Explorer


Theorem clel3g

Description: Alternate definition of membership in a set. (Contributed by NM, 13-Aug-2005)

Ref Expression
Assertion clel3g
|- ( B e. V -> ( A e. B <-> E. x ( x = B /\ A e. x ) ) )

Proof

Step Hyp Ref Expression
1 eleq2
 |-  ( x = B -> ( A e. x <-> A e. B ) )
2 1 ceqsexgv
 |-  ( B e. V -> ( E. x ( x = B /\ A e. x ) <-> A e. B ) )
3 2 bicomd
 |-  ( B e. V -> ( A e. B <-> E. x ( x = B /\ A e. x ) ) )