Metamath Proof Explorer


Theorem clel4OLD

Description: Obsolete version of clel4 as of 1-Sep-2024. (Contributed by NM, 18-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis clel4.1
|- B e. _V
Assertion clel4OLD
|- ( A e. B <-> A. x ( x = B -> A e. x ) )

Proof

Step Hyp Ref Expression
1 clel4.1
 |-  B e. _V
2 eleq2
 |-  ( x = B -> ( A e. x <-> A e. B ) )
3 1 2 ceqsalv
 |-  ( A. x ( x = B -> A e. x ) <-> A e. B )
4 3 bicomi
 |-  ( A e. B <-> A. x ( x = B -> A e. x ) )