Step |
Hyp |
Ref |
Expression |
1 |
|
elissetv |
|- ( A e. { x | ph } -> E. y y = A ) |
2 |
|
exsimpl |
|- ( E. x ( x = A /\ ph ) -> E. x x = A ) |
3 |
|
iseqsetv-cleq |
|- ( E. x x = A <-> E. y y = A ) |
4 |
2 3
|
sylib |
|- ( E. x ( x = A /\ ph ) -> E. y y = A ) |
5 |
|
eleq1 |
|- ( y = A -> ( y e. { x | ph } <-> A e. { x | ph } ) ) |
6 |
|
df-clab |
|- ( y e. { x | ph } <-> [ y / x ] ph ) |
7 |
|
sb5 |
|- ( [ y / x ] ph <-> E. x ( x = y /\ ph ) ) |
8 |
6 7
|
bitri |
|- ( y e. { x | ph } <-> E. x ( x = y /\ ph ) ) |
9 |
|
eqeq2 |
|- ( y = A -> ( x = y <-> x = A ) ) |
10 |
9
|
anbi1d |
|- ( y = A -> ( ( x = y /\ ph ) <-> ( x = A /\ ph ) ) ) |
11 |
10
|
exbidv |
|- ( y = A -> ( E. x ( x = y /\ ph ) <-> E. x ( x = A /\ ph ) ) ) |
12 |
8 11
|
bitrid |
|- ( y = A -> ( y e. { x | ph } <-> E. x ( x = A /\ ph ) ) ) |
13 |
5 12
|
bitr3d |
|- ( y = A -> ( A e. { x | ph } <-> E. x ( x = A /\ ph ) ) ) |
14 |
13
|
exlimiv |
|- ( E. y y = A -> ( A e. { x | ph } <-> E. x ( x = A /\ ph ) ) ) |
15 |
1 4 14
|
pm5.21nii |
|- ( A e. { x | ph } <-> E. x ( x = A /\ ph ) ) |