Step |
Hyp |
Ref |
Expression |
1 |
|
dfclel |
|- ( A e. { x | ph } <-> E. y ( y = A /\ y e. { x | ph } ) ) |
2 |
|
nfv |
|- F/ y ( x = A /\ ph ) |
3 |
|
nfv |
|- F/ x y = A |
4 |
|
nfsab1 |
|- F/ x y e. { x | ph } |
5 |
3 4
|
nfan |
|- F/ x ( y = A /\ y e. { x | ph } ) |
6 |
|
eqeq1 |
|- ( x = y -> ( x = A <-> y = A ) ) |
7 |
|
sbequ12 |
|- ( x = y -> ( ph <-> [ y / x ] ph ) ) |
8 |
|
df-clab |
|- ( y e. { x | ph } <-> [ y / x ] ph ) |
9 |
7 8
|
bitr4di |
|- ( x = y -> ( ph <-> y e. { x | ph } ) ) |
10 |
6 9
|
anbi12d |
|- ( x = y -> ( ( x = A /\ ph ) <-> ( y = A /\ y e. { x | ph } ) ) ) |
11 |
2 5 10
|
cbvexv1 |
|- ( E. x ( x = A /\ ph ) <-> E. y ( y = A /\ y e. { x | ph } ) ) |
12 |
1 11
|
bitr4i |
|- ( A e. { x | ph } <-> E. x ( x = A /\ ph ) ) |