Description: Equality implies bijection. (Contributed by RP, 9-May-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | cleq1lem | |- ( A = B -> ( ( A C_ C /\ ph ) <-> ( B C_ C /\ ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 | |- ( A = B -> ( A C_ C <-> B C_ C ) ) |
|
2 | 1 | anbi1d | |- ( A = B -> ( ( A C_ C /\ ph ) <-> ( B C_ C /\ ph ) ) ) |