Metamath Proof Explorer


Theorem clifte

Description: show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020)

Ref Expression
Hypotheses clifte.1
|- ( ph /\ -. ch )
clifte.2
|- th
Assertion clifte
|- ( th <-> ( ( ph /\ -. ch ) \/ ( ps /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 clifte.1
 |-  ( ph /\ -. ch )
2 clifte.2
 |-  th
3 1 orci
 |-  ( ( ph /\ -. ch ) \/ ( ps /\ ch ) )
4 2 3 2th
 |-  ( th <-> ( ( ph /\ -. ch ) \/ ( ps /\ ch ) ) )