Metamath Proof Explorer


Theorem cliftet

Description: show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020)

Ref Expression
Hypotheses cliftet.1
|- ( ph /\ ch )
cliftet.2
|- th
Assertion cliftet
|- ( th <-> ( ( ph /\ ch ) \/ ( ps /\ -. ch ) ) )

Proof

Step Hyp Ref Expression
1 cliftet.1
 |-  ( ph /\ ch )
2 cliftet.2
 |-  th
3 1 orci
 |-  ( ( ph /\ ch ) \/ ( ps /\ -. ch ) )
4 2 3 2th
 |-  ( th <-> ( ( ph /\ ch ) \/ ( ps /\ -. ch ) ) )