Metamath Proof Explorer


Theorem clifteta

Description: show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020)

Ref Expression
Hypotheses clifteta.1
|- ( ( ph /\ -. ch ) \/ ( ps /\ ch ) )
clifteta.2
|- th
Assertion clifteta
|- ( th <-> ( ( ph /\ -. ch ) \/ ( ps /\ ch ) ) )

Proof

Step Hyp Ref Expression
1 clifteta.1
 |-  ( ( ph /\ -. ch ) \/ ( ps /\ ch ) )
2 clifteta.2
 |-  th
3 2 1 2th
 |-  ( th <-> ( ( ph /\ -. ch ) \/ ( ps /\ ch ) ) )