Metamath Proof Explorer


Theorem cliftetb

Description: show d is the same as an if-else involving a,b. (Contributed by Jarvin Udandy, 20-Sep-2020)

Ref Expression
Hypotheses cliftetb.1
|- ( ( ph /\ ch ) \/ ( ps /\ -. ch ) )
cliftetb.2
|- th
Assertion cliftetb
|- ( th <-> ( ( ph /\ ch ) \/ ( ps /\ -. ch ) ) )

Proof

Step Hyp Ref Expression
1 cliftetb.1
 |-  ( ( ph /\ ch ) \/ ( ps /\ -. ch ) )
2 cliftetb.2
 |-  th
3 2 1 2th
 |-  ( th <-> ( ( ph /\ ch ) \/ ( ps /\ -. ch ) ) )