Step |
Hyp |
Ref |
Expression |
1 |
|
clim0.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
clim0.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
clim0.3 |
|- ( ph -> F e. V ) |
4 |
|
clim0.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
5 |
|
clim0c.6 |
|- ( ( ph /\ k e. Z ) -> B e. CC ) |
6 |
|
0cnd |
|- ( ph -> 0 e. CC ) |
7 |
1 2 3 4 6 5
|
clim2c |
|- ( ph -> ( F ~~> 0 <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( B - 0 ) ) < x ) ) |
8 |
1
|
uztrn2 |
|- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
9 |
5
|
subid1d |
|- ( ( ph /\ k e. Z ) -> ( B - 0 ) = B ) |
10 |
9
|
fveq2d |
|- ( ( ph /\ k e. Z ) -> ( abs ` ( B - 0 ) ) = ( abs ` B ) ) |
11 |
10
|
breq1d |
|- ( ( ph /\ k e. Z ) -> ( ( abs ` ( B - 0 ) ) < x <-> ( abs ` B ) < x ) ) |
12 |
8 11
|
sylan2 |
|- ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( B - 0 ) ) < x <-> ( abs ` B ) < x ) ) |
13 |
12
|
anassrs |
|- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( abs ` ( B - 0 ) ) < x <-> ( abs ` B ) < x ) ) |
14 |
13
|
ralbidva |
|- ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( B - 0 ) ) < x <-> A. k e. ( ZZ>= ` j ) ( abs ` B ) < x ) ) |
15 |
14
|
rexbidva |
|- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( B - 0 ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < x ) ) |
16 |
15
|
ralbidv |
|- ( ph -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( B - 0 ) ) < x <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < x ) ) |
17 |
7 16
|
bitrd |
|- ( ph -> ( F ~~> 0 <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < x ) ) |