| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clim0cf.nf |  |-  F/_ k F | 
						
							| 2 |  | clim0cf.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 3 |  | clim0cf.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | clim0cf.f |  |-  ( ph -> F e. V ) | 
						
							| 5 |  | clim0cf.fv |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) | 
						
							| 6 |  | clim0cf.b |  |-  ( ( ph /\ k e. Z ) -> B e. CC ) | 
						
							| 7 |  | 0cnd |  |-  ( ph -> 0 e. CC ) | 
						
							| 8 | 1 2 3 4 5 7 6 | clim2cf |  |-  ( ph -> ( F ~~> 0 <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( B - 0 ) ) < x ) ) | 
						
							| 9 | 2 | uztrn2 |  |-  ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) | 
						
							| 10 | 6 | subid1d |  |-  ( ( ph /\ k e. Z ) -> ( B - 0 ) = B ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( ph /\ k e. Z ) -> ( abs ` ( B - 0 ) ) = ( abs ` B ) ) | 
						
							| 12 | 11 | breq1d |  |-  ( ( ph /\ k e. Z ) -> ( ( abs ` ( B - 0 ) ) < x <-> ( abs ` B ) < x ) ) | 
						
							| 13 | 9 12 | sylan2 |  |-  ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( B - 0 ) ) < x <-> ( abs ` B ) < x ) ) | 
						
							| 14 | 13 | anassrs |  |-  ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( abs ` ( B - 0 ) ) < x <-> ( abs ` B ) < x ) ) | 
						
							| 15 | 14 | ralbidva |  |-  ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( B - 0 ) ) < x <-> A. k e. ( ZZ>= ` j ) ( abs ` B ) < x ) ) | 
						
							| 16 | 15 | rexbidva |  |-  ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( B - 0 ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < x ) ) | 
						
							| 17 | 16 | ralbidv |  |-  ( ph -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( B - 0 ) ) < x <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < x ) ) | 
						
							| 18 | 8 17 | bitrd |  |-  ( ph -> ( F ~~> 0 <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < x ) ) |