Step |
Hyp |
Ref |
Expression |
1 |
|
clim1fr1.1 |
|- F = ( n e. NN |-> ( ( ( A x. n ) + B ) / ( A x. n ) ) ) |
2 |
|
clim1fr1.2 |
|- ( ph -> A e. CC ) |
3 |
|
clim1fr1.3 |
|- ( ph -> A =/= 0 ) |
4 |
|
clim1fr1.4 |
|- ( ph -> B e. CC ) |
5 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
6 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
7 |
|
nnex |
|- NN e. _V |
8 |
7
|
mptex |
|- ( n e. NN |-> 1 ) e. _V |
9 |
8
|
a1i |
|- ( ph -> ( n e. NN |-> 1 ) e. _V ) |
10 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
11 |
|
eqidd |
|- ( k e. NN -> ( n e. NN |-> 1 ) = ( n e. NN |-> 1 ) ) |
12 |
|
eqidd |
|- ( ( k e. NN /\ n = k ) -> 1 = 1 ) |
13 |
|
id |
|- ( k e. NN -> k e. NN ) |
14 |
|
1cnd |
|- ( k e. NN -> 1 e. CC ) |
15 |
11 12 13 14
|
fvmptd |
|- ( k e. NN -> ( ( n e. NN |-> 1 ) ` k ) = 1 ) |
16 |
15
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> 1 ) ` k ) = 1 ) |
17 |
5 6 9 10 16
|
climconst |
|- ( ph -> ( n e. NN |-> 1 ) ~~> 1 ) |
18 |
7
|
mptex |
|- ( n e. NN |-> ( ( ( A x. n ) + B ) / ( A x. n ) ) ) e. _V |
19 |
1 18
|
eqeltri |
|- F e. _V |
20 |
19
|
a1i |
|- ( ph -> F e. _V ) |
21 |
4
|
adantr |
|- ( ( ph /\ n e. NN ) -> B e. CC ) |
22 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> A e. CC ) |
23 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
24 |
23
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. CC ) |
25 |
3
|
adantr |
|- ( ( ph /\ n e. NN ) -> A =/= 0 ) |
26 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
27 |
26
|
adantl |
|- ( ( ph /\ n e. NN ) -> n =/= 0 ) |
28 |
21 22 24 25 27
|
divdiv1d |
|- ( ( ph /\ n e. NN ) -> ( ( B / A ) / n ) = ( B / ( A x. n ) ) ) |
29 |
28
|
mpteq2dva |
|- ( ph -> ( n e. NN |-> ( ( B / A ) / n ) ) = ( n e. NN |-> ( B / ( A x. n ) ) ) ) |
30 |
4 2 3
|
divcld |
|- ( ph -> ( B / A ) e. CC ) |
31 |
|
divcnv |
|- ( ( B / A ) e. CC -> ( n e. NN |-> ( ( B / A ) / n ) ) ~~> 0 ) |
32 |
30 31
|
syl |
|- ( ph -> ( n e. NN |-> ( ( B / A ) / n ) ) ~~> 0 ) |
33 |
29 32
|
eqbrtrrd |
|- ( ph -> ( n e. NN |-> ( B / ( A x. n ) ) ) ~~> 0 ) |
34 |
|
eqid |
|- ( n e. NN |-> 1 ) = ( n e. NN |-> 1 ) |
35 |
|
1cnd |
|- ( n e. NN -> 1 e. CC ) |
36 |
34 35
|
fmpti |
|- ( n e. NN |-> 1 ) : NN --> CC |
37 |
36
|
a1i |
|- ( ph -> ( n e. NN |-> 1 ) : NN --> CC ) |
38 |
37
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> 1 ) ` k ) e. CC ) |
39 |
22 24
|
mulcld |
|- ( ( ph /\ n e. NN ) -> ( A x. n ) e. CC ) |
40 |
22 24 25 27
|
mulne0d |
|- ( ( ph /\ n e. NN ) -> ( A x. n ) =/= 0 ) |
41 |
21 39 40
|
divcld |
|- ( ( ph /\ n e. NN ) -> ( B / ( A x. n ) ) e. CC ) |
42 |
41
|
fmpttd |
|- ( ph -> ( n e. NN |-> ( B / ( A x. n ) ) ) : NN --> CC ) |
43 |
42
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) e. CC ) |
44 |
|
oveq2 |
|- ( n = k -> ( A x. n ) = ( A x. k ) ) |
45 |
44
|
oveq1d |
|- ( n = k -> ( ( A x. n ) + B ) = ( ( A x. k ) + B ) ) |
46 |
45 44
|
oveq12d |
|- ( n = k -> ( ( ( A x. n ) + B ) / ( A x. n ) ) = ( ( ( A x. k ) + B ) / ( A x. k ) ) ) |
47 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
48 |
2
|
adantr |
|- ( ( ph /\ k e. NN ) -> A e. CC ) |
49 |
47
|
nncnd |
|- ( ( ph /\ k e. NN ) -> k e. CC ) |
50 |
48 49
|
mulcld |
|- ( ( ph /\ k e. NN ) -> ( A x. k ) e. CC ) |
51 |
4
|
adantr |
|- ( ( ph /\ k e. NN ) -> B e. CC ) |
52 |
50 51
|
addcld |
|- ( ( ph /\ k e. NN ) -> ( ( A x. k ) + B ) e. CC ) |
53 |
3
|
adantr |
|- ( ( ph /\ k e. NN ) -> A =/= 0 ) |
54 |
47
|
nnne0d |
|- ( ( ph /\ k e. NN ) -> k =/= 0 ) |
55 |
48 49 53 54
|
mulne0d |
|- ( ( ph /\ k e. NN ) -> ( A x. k ) =/= 0 ) |
56 |
52 50 55
|
divcld |
|- ( ( ph /\ k e. NN ) -> ( ( ( A x. k ) + B ) / ( A x. k ) ) e. CC ) |
57 |
1 46 47 56
|
fvmptd3 |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( ( ( A x. k ) + B ) / ( A x. k ) ) ) |
58 |
50 51 50 55
|
divdird |
|- ( ( ph /\ k e. NN ) -> ( ( ( A x. k ) + B ) / ( A x. k ) ) = ( ( ( A x. k ) / ( A x. k ) ) + ( B / ( A x. k ) ) ) ) |
59 |
50 55
|
dividd |
|- ( ( ph /\ k e. NN ) -> ( ( A x. k ) / ( A x. k ) ) = 1 ) |
60 |
59
|
oveq1d |
|- ( ( ph /\ k e. NN ) -> ( ( ( A x. k ) / ( A x. k ) ) + ( B / ( A x. k ) ) ) = ( 1 + ( B / ( A x. k ) ) ) ) |
61 |
58 60
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( ( ( A x. k ) + B ) / ( A x. k ) ) = ( 1 + ( B / ( A x. k ) ) ) ) |
62 |
16
|
eqcomd |
|- ( ( ph /\ k e. NN ) -> 1 = ( ( n e. NN |-> 1 ) ` k ) ) |
63 |
|
eqidd |
|- ( ( ph /\ k e. NN ) -> ( n e. NN |-> ( B / ( A x. n ) ) ) = ( n e. NN |-> ( B / ( A x. n ) ) ) ) |
64 |
|
simpr |
|- ( ( ( ph /\ k e. NN ) /\ n = k ) -> n = k ) |
65 |
64
|
oveq2d |
|- ( ( ( ph /\ k e. NN ) /\ n = k ) -> ( A x. n ) = ( A x. k ) ) |
66 |
65
|
oveq2d |
|- ( ( ( ph /\ k e. NN ) /\ n = k ) -> ( B / ( A x. n ) ) = ( B / ( A x. k ) ) ) |
67 |
51 50 55
|
divcld |
|- ( ( ph /\ k e. NN ) -> ( B / ( A x. k ) ) e. CC ) |
68 |
63 66 47 67
|
fvmptd |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) = ( B / ( A x. k ) ) ) |
69 |
68
|
eqcomd |
|- ( ( ph /\ k e. NN ) -> ( B / ( A x. k ) ) = ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) ) |
70 |
62 69
|
oveq12d |
|- ( ( ph /\ k e. NN ) -> ( 1 + ( B / ( A x. k ) ) ) = ( ( ( n e. NN |-> 1 ) ` k ) + ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) ) ) |
71 |
57 61 70
|
3eqtrd |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( ( ( n e. NN |-> 1 ) ` k ) + ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) ) ) |
72 |
5 6 17 20 33 38 43 71
|
climadd |
|- ( ph -> F ~~> ( 1 + 0 ) ) |
73 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
74 |
72 73
|
breqtrdi |
|- ( ph -> F ~~> 1 ) |