| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clim1fr1.1 |
|- F = ( n e. NN |-> ( ( ( A x. n ) + B ) / ( A x. n ) ) ) |
| 2 |
|
clim1fr1.2 |
|- ( ph -> A e. CC ) |
| 3 |
|
clim1fr1.3 |
|- ( ph -> A =/= 0 ) |
| 4 |
|
clim1fr1.4 |
|- ( ph -> B e. CC ) |
| 5 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 6 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 7 |
|
nnex |
|- NN e. _V |
| 8 |
7
|
mptex |
|- ( n e. NN |-> 1 ) e. _V |
| 9 |
8
|
a1i |
|- ( ph -> ( n e. NN |-> 1 ) e. _V ) |
| 10 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 11 |
|
eqidd |
|- ( k e. NN -> ( n e. NN |-> 1 ) = ( n e. NN |-> 1 ) ) |
| 12 |
|
eqidd |
|- ( ( k e. NN /\ n = k ) -> 1 = 1 ) |
| 13 |
|
id |
|- ( k e. NN -> k e. NN ) |
| 14 |
|
1cnd |
|- ( k e. NN -> 1 e. CC ) |
| 15 |
11 12 13 14
|
fvmptd |
|- ( k e. NN -> ( ( n e. NN |-> 1 ) ` k ) = 1 ) |
| 16 |
15
|
adantl |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> 1 ) ` k ) = 1 ) |
| 17 |
5 6 9 10 16
|
climconst |
|- ( ph -> ( n e. NN |-> 1 ) ~~> 1 ) |
| 18 |
7
|
mptex |
|- ( n e. NN |-> ( ( ( A x. n ) + B ) / ( A x. n ) ) ) e. _V |
| 19 |
1 18
|
eqeltri |
|- F e. _V |
| 20 |
19
|
a1i |
|- ( ph -> F e. _V ) |
| 21 |
4
|
adantr |
|- ( ( ph /\ n e. NN ) -> B e. CC ) |
| 22 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> A e. CC ) |
| 23 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
| 24 |
23
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. CC ) |
| 25 |
3
|
adantr |
|- ( ( ph /\ n e. NN ) -> A =/= 0 ) |
| 26 |
|
nnne0 |
|- ( n e. NN -> n =/= 0 ) |
| 27 |
26
|
adantl |
|- ( ( ph /\ n e. NN ) -> n =/= 0 ) |
| 28 |
21 22 24 25 27
|
divdiv1d |
|- ( ( ph /\ n e. NN ) -> ( ( B / A ) / n ) = ( B / ( A x. n ) ) ) |
| 29 |
28
|
mpteq2dva |
|- ( ph -> ( n e. NN |-> ( ( B / A ) / n ) ) = ( n e. NN |-> ( B / ( A x. n ) ) ) ) |
| 30 |
4 2 3
|
divcld |
|- ( ph -> ( B / A ) e. CC ) |
| 31 |
|
divcnv |
|- ( ( B / A ) e. CC -> ( n e. NN |-> ( ( B / A ) / n ) ) ~~> 0 ) |
| 32 |
30 31
|
syl |
|- ( ph -> ( n e. NN |-> ( ( B / A ) / n ) ) ~~> 0 ) |
| 33 |
29 32
|
eqbrtrrd |
|- ( ph -> ( n e. NN |-> ( B / ( A x. n ) ) ) ~~> 0 ) |
| 34 |
|
eqid |
|- ( n e. NN |-> 1 ) = ( n e. NN |-> 1 ) |
| 35 |
|
1cnd |
|- ( n e. NN -> 1 e. CC ) |
| 36 |
34 35
|
fmpti |
|- ( n e. NN |-> 1 ) : NN --> CC |
| 37 |
36
|
a1i |
|- ( ph -> ( n e. NN |-> 1 ) : NN --> CC ) |
| 38 |
37
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> 1 ) ` k ) e. CC ) |
| 39 |
22 24
|
mulcld |
|- ( ( ph /\ n e. NN ) -> ( A x. n ) e. CC ) |
| 40 |
22 24 25 27
|
mulne0d |
|- ( ( ph /\ n e. NN ) -> ( A x. n ) =/= 0 ) |
| 41 |
21 39 40
|
divcld |
|- ( ( ph /\ n e. NN ) -> ( B / ( A x. n ) ) e. CC ) |
| 42 |
41
|
fmpttd |
|- ( ph -> ( n e. NN |-> ( B / ( A x. n ) ) ) : NN --> CC ) |
| 43 |
42
|
ffvelcdmda |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) e. CC ) |
| 44 |
|
oveq2 |
|- ( n = k -> ( A x. n ) = ( A x. k ) ) |
| 45 |
44
|
oveq1d |
|- ( n = k -> ( ( A x. n ) + B ) = ( ( A x. k ) + B ) ) |
| 46 |
45 44
|
oveq12d |
|- ( n = k -> ( ( ( A x. n ) + B ) / ( A x. n ) ) = ( ( ( A x. k ) + B ) / ( A x. k ) ) ) |
| 47 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
| 48 |
2
|
adantr |
|- ( ( ph /\ k e. NN ) -> A e. CC ) |
| 49 |
47
|
nncnd |
|- ( ( ph /\ k e. NN ) -> k e. CC ) |
| 50 |
48 49
|
mulcld |
|- ( ( ph /\ k e. NN ) -> ( A x. k ) e. CC ) |
| 51 |
4
|
adantr |
|- ( ( ph /\ k e. NN ) -> B e. CC ) |
| 52 |
50 51
|
addcld |
|- ( ( ph /\ k e. NN ) -> ( ( A x. k ) + B ) e. CC ) |
| 53 |
3
|
adantr |
|- ( ( ph /\ k e. NN ) -> A =/= 0 ) |
| 54 |
47
|
nnne0d |
|- ( ( ph /\ k e. NN ) -> k =/= 0 ) |
| 55 |
48 49 53 54
|
mulne0d |
|- ( ( ph /\ k e. NN ) -> ( A x. k ) =/= 0 ) |
| 56 |
52 50 55
|
divcld |
|- ( ( ph /\ k e. NN ) -> ( ( ( A x. k ) + B ) / ( A x. k ) ) e. CC ) |
| 57 |
1 46 47 56
|
fvmptd3 |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( ( ( A x. k ) + B ) / ( A x. k ) ) ) |
| 58 |
50 51 50 55
|
divdird |
|- ( ( ph /\ k e. NN ) -> ( ( ( A x. k ) + B ) / ( A x. k ) ) = ( ( ( A x. k ) / ( A x. k ) ) + ( B / ( A x. k ) ) ) ) |
| 59 |
50 55
|
dividd |
|- ( ( ph /\ k e. NN ) -> ( ( A x. k ) / ( A x. k ) ) = 1 ) |
| 60 |
59
|
oveq1d |
|- ( ( ph /\ k e. NN ) -> ( ( ( A x. k ) / ( A x. k ) ) + ( B / ( A x. k ) ) ) = ( 1 + ( B / ( A x. k ) ) ) ) |
| 61 |
58 60
|
eqtrd |
|- ( ( ph /\ k e. NN ) -> ( ( ( A x. k ) + B ) / ( A x. k ) ) = ( 1 + ( B / ( A x. k ) ) ) ) |
| 62 |
16
|
eqcomd |
|- ( ( ph /\ k e. NN ) -> 1 = ( ( n e. NN |-> 1 ) ` k ) ) |
| 63 |
|
eqidd |
|- ( ( ph /\ k e. NN ) -> ( n e. NN |-> ( B / ( A x. n ) ) ) = ( n e. NN |-> ( B / ( A x. n ) ) ) ) |
| 64 |
|
simpr |
|- ( ( ( ph /\ k e. NN ) /\ n = k ) -> n = k ) |
| 65 |
64
|
oveq2d |
|- ( ( ( ph /\ k e. NN ) /\ n = k ) -> ( A x. n ) = ( A x. k ) ) |
| 66 |
65
|
oveq2d |
|- ( ( ( ph /\ k e. NN ) /\ n = k ) -> ( B / ( A x. n ) ) = ( B / ( A x. k ) ) ) |
| 67 |
51 50 55
|
divcld |
|- ( ( ph /\ k e. NN ) -> ( B / ( A x. k ) ) e. CC ) |
| 68 |
63 66 47 67
|
fvmptd |
|- ( ( ph /\ k e. NN ) -> ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) = ( B / ( A x. k ) ) ) |
| 69 |
68
|
eqcomd |
|- ( ( ph /\ k e. NN ) -> ( B / ( A x. k ) ) = ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) ) |
| 70 |
62 69
|
oveq12d |
|- ( ( ph /\ k e. NN ) -> ( 1 + ( B / ( A x. k ) ) ) = ( ( ( n e. NN |-> 1 ) ` k ) + ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) ) ) |
| 71 |
57 61 70
|
3eqtrd |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = ( ( ( n e. NN |-> 1 ) ` k ) + ( ( n e. NN |-> ( B / ( A x. n ) ) ) ` k ) ) ) |
| 72 |
5 6 17 20 33 38 43 71
|
climadd |
|- ( ph -> F ~~> ( 1 + 0 ) ) |
| 73 |
|
1p0e1 |
|- ( 1 + 0 ) = 1 |
| 74 |
72 73
|
breqtrdi |
|- ( ph -> F ~~> 1 ) |