Step |
Hyp |
Ref |
Expression |
1 |
|
clim2d.k |
|- F/ k ph |
2 |
|
clim2d.f |
|- F/_ k F |
3 |
|
clim2d.m |
|- ( ph -> M e. ZZ ) |
4 |
|
clim2d.z |
|- Z = ( ZZ>= ` M ) |
5 |
|
clim2d.c |
|- ( ph -> F ~~> A ) |
6 |
|
clim2d.b |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
7 |
|
clim2d.x |
|- ( ph -> X e. RR+ ) |
8 |
|
climrel |
|- Rel ~~> |
9 |
8
|
a1i |
|- ( ph -> Rel ~~> ) |
10 |
|
brrelex1 |
|- ( ( Rel ~~> /\ F ~~> A ) -> F e. _V ) |
11 |
9 5 10
|
syl2anc |
|- ( ph -> F e. _V ) |
12 |
1 2 4 3 11 6
|
clim2f2 |
|- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) ) |
13 |
5 12
|
mpbid |
|- ( ph -> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) |
14 |
13
|
simprd |
|- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) |
15 |
|
breq2 |
|- ( x = X -> ( ( abs ` ( B - A ) ) < x <-> ( abs ` ( B - A ) ) < X ) ) |
16 |
15
|
anbi2d |
|- ( x = X -> ( ( B e. CC /\ ( abs ` ( B - A ) ) < x ) <-> ( B e. CC /\ ( abs ` ( B - A ) ) < X ) ) ) |
17 |
16
|
ralbidv |
|- ( x = X -> ( A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) <-> A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < X ) ) ) |
18 |
17
|
rexbidv |
|- ( x = X -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < X ) ) ) |
19 |
18
|
rspcva |
|- ( ( X e. RR+ /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < X ) ) |
20 |
7 14 19
|
syl2anc |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < X ) ) |