| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clim2div.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
clim2div.2 |
|- ( ph -> N e. Z ) |
| 3 |
|
clim2div.3 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 4 |
|
clim2div.4 |
|- ( ph -> seq M ( x. , F ) ~~> A ) |
| 5 |
|
clim2div.5 |
|- ( ph -> ( seq M ( x. , F ) ` N ) =/= 0 ) |
| 6 |
|
eqid |
|- ( ZZ>= ` ( N + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) |
| 7 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 8 |
7 1
|
eleq2s |
|- ( N e. Z -> N e. ZZ ) |
| 9 |
2 8
|
syl |
|- ( ph -> N e. ZZ ) |
| 10 |
9
|
peano2zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
| 11 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 12 |
11 1
|
eleq2s |
|- ( N e. Z -> M e. ZZ ) |
| 13 |
2 12
|
syl |
|- ( ph -> M e. ZZ ) |
| 14 |
1 13 3
|
prodf |
|- ( ph -> seq M ( x. , F ) : Z --> CC ) |
| 15 |
14 2
|
ffvelcdmd |
|- ( ph -> ( seq M ( x. , F ) ` N ) e. CC ) |
| 16 |
15 5
|
reccld |
|- ( ph -> ( 1 / ( seq M ( x. , F ) ` N ) ) e. CC ) |
| 17 |
|
seqex |
|- seq ( N + 1 ) ( x. , F ) e. _V |
| 18 |
17
|
a1i |
|- ( ph -> seq ( N + 1 ) ( x. , F ) e. _V ) |
| 19 |
2 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 20 |
|
peano2uz |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 21 |
19 20
|
syl |
|- ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 22 |
21 1
|
eleqtrrdi |
|- ( ph -> ( N + 1 ) e. Z ) |
| 23 |
1
|
uztrn2 |
|- ( ( ( N + 1 ) e. Z /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. Z ) |
| 24 |
22 23
|
sylan |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. Z ) |
| 25 |
14
|
ffvelcdmda |
|- ( ( ph /\ j e. Z ) -> ( seq M ( x. , F ) ` j ) e. CC ) |
| 26 |
24 25
|
syldan |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` j ) e. CC ) |
| 27 |
|
mulcl |
|- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) |
| 28 |
27
|
adantl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
| 29 |
|
mulass |
|- ( ( k e. CC /\ x e. CC /\ y e. CC ) -> ( ( k x. x ) x. y ) = ( k x. ( x x. y ) ) ) |
| 30 |
29
|
adantl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( k e. CC /\ x e. CC /\ y e. CC ) ) -> ( ( k x. x ) x. y ) = ( k x. ( x x. y ) ) ) |
| 31 |
|
simpr |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. ( ZZ>= ` ( N + 1 ) ) ) |
| 32 |
19
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> N e. ( ZZ>= ` M ) ) |
| 33 |
|
elfzuz |
|- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
| 34 |
33 1
|
eleqtrrdi |
|- ( k e. ( M ... j ) -> k e. Z ) |
| 35 |
34 3
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 36 |
35
|
adantlr |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 37 |
28 30 31 32 36
|
seqsplit |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` j ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` j ) ) ) |
| 38 |
37
|
eqcomd |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` j ) ) = ( seq M ( x. , F ) ` j ) ) |
| 39 |
15
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` N ) e. CC ) |
| 40 |
1
|
uztrn2 |
|- ( ( ( N + 1 ) e. Z /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) |
| 41 |
22 40
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) |
| 42 |
41 3
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` k ) e. CC ) |
| 43 |
6 10 42
|
prodf |
|- ( ph -> seq ( N + 1 ) ( x. , F ) : ( ZZ>= ` ( N + 1 ) ) --> CC ) |
| 44 |
43
|
ffvelcdmda |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , F ) ` j ) e. CC ) |
| 45 |
5
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` N ) =/= 0 ) |
| 46 |
26 39 44 45
|
divmuld |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( ( seq M ( x. , F ) ` j ) / ( seq M ( x. , F ) ` N ) ) = ( seq ( N + 1 ) ( x. , F ) ` j ) <-> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` j ) ) = ( seq M ( x. , F ) ` j ) ) ) |
| 47 |
38 46
|
mpbird |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( seq M ( x. , F ) ` j ) / ( seq M ( x. , F ) ` N ) ) = ( seq ( N + 1 ) ( x. , F ) ` j ) ) |
| 48 |
26 39 45
|
divrec2d |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( seq M ( x. , F ) ` j ) / ( seq M ( x. , F ) ` N ) ) = ( ( 1 / ( seq M ( x. , F ) ` N ) ) x. ( seq M ( x. , F ) ` j ) ) ) |
| 49 |
47 48
|
eqtr3d |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , F ) ` j ) = ( ( 1 / ( seq M ( x. , F ) ` N ) ) x. ( seq M ( x. , F ) ` j ) ) ) |
| 50 |
6 10 4 16 18 26 49
|
climmulc2 |
|- ( ph -> seq ( N + 1 ) ( x. , F ) ~~> ( ( 1 / ( seq M ( x. , F ) ` N ) ) x. A ) ) |
| 51 |
|
climcl |
|- ( seq M ( x. , F ) ~~> A -> A e. CC ) |
| 52 |
4 51
|
syl |
|- ( ph -> A e. CC ) |
| 53 |
52 15 5
|
divrec2d |
|- ( ph -> ( A / ( seq M ( x. , F ) ` N ) ) = ( ( 1 / ( seq M ( x. , F ) ` N ) ) x. A ) ) |
| 54 |
50 53
|
breqtrrd |
|- ( ph -> seq ( N + 1 ) ( x. , F ) ~~> ( A / ( seq M ( x. , F ) ` N ) ) ) |