Step |
Hyp |
Ref |
Expression |
1 |
|
clim2prod.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
clim2prod.2 |
|- ( ph -> N e. Z ) |
3 |
|
clim2prod.3 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
4 |
|
clim2prod.4 |
|- ( ph -> seq ( N + 1 ) ( x. , F ) ~~> A ) |
5 |
|
eqid |
|- ( ZZ>= ` ( N + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) |
6 |
|
uzssz |
|- ( ZZ>= ` M ) C_ ZZ |
7 |
1 6
|
eqsstri |
|- Z C_ ZZ |
8 |
7 2
|
sselid |
|- ( ph -> N e. ZZ ) |
9 |
8
|
peano2zd |
|- ( ph -> ( N + 1 ) e. ZZ ) |
10 |
2 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
11 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
12 |
10 11
|
syl |
|- ( ph -> M e. ZZ ) |
13 |
1 12 3
|
prodf |
|- ( ph -> seq M ( x. , F ) : Z --> CC ) |
14 |
13 2
|
ffvelrnd |
|- ( ph -> ( seq M ( x. , F ) ` N ) e. CC ) |
15 |
|
seqex |
|- seq M ( x. , F ) e. _V |
16 |
15
|
a1i |
|- ( ph -> seq M ( x. , F ) e. _V ) |
17 |
|
peano2uz |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
18 |
|
uzss |
|- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( ZZ>= ` ( N + 1 ) ) C_ ( ZZ>= ` M ) ) |
19 |
10 17 18
|
3syl |
|- ( ph -> ( ZZ>= ` ( N + 1 ) ) C_ ( ZZ>= ` M ) ) |
20 |
19 1
|
sseqtrrdi |
|- ( ph -> ( ZZ>= ` ( N + 1 ) ) C_ Z ) |
21 |
20
|
sselda |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) |
22 |
21 3
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` k ) e. CC ) |
23 |
5 9 22
|
prodf |
|- ( ph -> seq ( N + 1 ) ( x. , F ) : ( ZZ>= ` ( N + 1 ) ) --> CC ) |
24 |
23
|
ffvelrnda |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , F ) ` k ) e. CC ) |
25 |
|
fveq2 |
|- ( x = ( N + 1 ) -> ( seq M ( x. , F ) ` x ) = ( seq M ( x. , F ) ` ( N + 1 ) ) ) |
26 |
|
fveq2 |
|- ( x = ( N + 1 ) -> ( seq ( N + 1 ) ( x. , F ) ` x ) = ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) |
27 |
26
|
oveq2d |
|- ( x = ( N + 1 ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) |
28 |
25 27
|
eqeq12d |
|- ( x = ( N + 1 ) -> ( ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) <-> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) ) |
29 |
28
|
imbi2d |
|- ( x = ( N + 1 ) -> ( ( ph -> ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) ) <-> ( ph -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) ) ) |
30 |
|
fveq2 |
|- ( x = n -> ( seq M ( x. , F ) ` x ) = ( seq M ( x. , F ) ` n ) ) |
31 |
|
fveq2 |
|- ( x = n -> ( seq ( N + 1 ) ( x. , F ) ` x ) = ( seq ( N + 1 ) ( x. , F ) ` n ) ) |
32 |
31
|
oveq2d |
|- ( x = n -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) |
33 |
30 32
|
eqeq12d |
|- ( x = n -> ( ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) <-> ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) ) |
34 |
33
|
imbi2d |
|- ( x = n -> ( ( ph -> ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) ) <-> ( ph -> ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) ) ) |
35 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq M ( x. , F ) ` x ) = ( seq M ( x. , F ) ` ( n + 1 ) ) ) |
36 |
|
fveq2 |
|- ( x = ( n + 1 ) -> ( seq ( N + 1 ) ( x. , F ) ` x ) = ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) |
37 |
36
|
oveq2d |
|- ( x = ( n + 1 ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) |
38 |
35 37
|
eqeq12d |
|- ( x = ( n + 1 ) -> ( ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) <-> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) |
39 |
38
|
imbi2d |
|- ( x = ( n + 1 ) -> ( ( ph -> ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) ) <-> ( ph -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
40 |
|
fveq2 |
|- ( x = k -> ( seq M ( x. , F ) ` x ) = ( seq M ( x. , F ) ` k ) ) |
41 |
|
fveq2 |
|- ( x = k -> ( seq ( N + 1 ) ( x. , F ) ` x ) = ( seq ( N + 1 ) ( x. , F ) ` k ) ) |
42 |
41
|
oveq2d |
|- ( x = k -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) |
43 |
40 42
|
eqeq12d |
|- ( x = k -> ( ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) <-> ( seq M ( x. , F ) ` k ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) ) |
44 |
43
|
imbi2d |
|- ( x = k -> ( ( ph -> ( seq M ( x. , F ) ` x ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` x ) ) ) <-> ( ph -> ( seq M ( x. , F ) ` k ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) ) ) |
45 |
10
|
adantr |
|- ( ( ph /\ ( N + 1 ) e. ZZ ) -> N e. ( ZZ>= ` M ) ) |
46 |
|
seqp1 |
|- ( N e. ( ZZ>= ` M ) -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( F ` ( N + 1 ) ) ) ) |
47 |
45 46
|
syl |
|- ( ( ph /\ ( N + 1 ) e. ZZ ) -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( F ` ( N + 1 ) ) ) ) |
48 |
|
seq1 |
|- ( ( N + 1 ) e. ZZ -> ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) = ( F ` ( N + 1 ) ) ) |
49 |
48
|
adantl |
|- ( ( ph /\ ( N + 1 ) e. ZZ ) -> ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) = ( F ` ( N + 1 ) ) ) |
50 |
49
|
oveq2d |
|- ( ( ph /\ ( N + 1 ) e. ZZ ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( F ` ( N + 1 ) ) ) ) |
51 |
47 50
|
eqtr4d |
|- ( ( ph /\ ( N + 1 ) e. ZZ ) -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) |
52 |
51
|
expcom |
|- ( ( N + 1 ) e. ZZ -> ( ph -> ( seq M ( x. , F ) ` ( N + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( N + 1 ) ) ) ) ) |
53 |
19
|
sselda |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> n e. ( ZZ>= ` M ) ) |
54 |
|
seqp1 |
|- ( n e. ( ZZ>= ` M ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
55 |
53 54
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
56 |
55
|
adantr |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
57 |
|
oveq1 |
|- ( ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) -> ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) = ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) ) |
58 |
57
|
adantl |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ( seq M ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) = ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) ) |
59 |
14
|
adantr |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` N ) e. CC ) |
60 |
23
|
ffvelrnda |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , F ) ` n ) e. CC ) |
61 |
|
peano2uz |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. ( ZZ>= ` M ) ) |
62 |
61 1
|
eleqtrrdi |
|- ( n e. ( ZZ>= ` M ) -> ( n + 1 ) e. Z ) |
63 |
53 62
|
syl |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( n + 1 ) e. Z ) |
64 |
3
|
ralrimiva |
|- ( ph -> A. k e. Z ( F ` k ) e. CC ) |
65 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
66 |
65
|
eleq1d |
|- ( k = ( n + 1 ) -> ( ( F ` k ) e. CC <-> ( F ` ( n + 1 ) ) e. CC ) ) |
67 |
66
|
rspcv |
|- ( ( n + 1 ) e. Z -> ( A. k e. Z ( F ` k ) e. CC -> ( F ` ( n + 1 ) ) e. CC ) ) |
68 |
64 67
|
mpan9 |
|- ( ( ph /\ ( n + 1 ) e. Z ) -> ( F ` ( n + 1 ) ) e. CC ) |
69 |
63 68
|
syldan |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` ( n + 1 ) ) e. CC ) |
70 |
59 60 69
|
mulassd |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
71 |
70
|
adantr |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
72 |
|
seqp1 |
|- ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) = ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
73 |
72
|
adantl |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) = ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) |
74 |
73
|
oveq2d |
|- ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
75 |
74
|
adantr |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( ( seq ( N + 1 ) ( x. , F ) ` n ) x. ( F ` ( n + 1 ) ) ) ) ) |
76 |
71 75
|
eqtr4d |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) x. ( F ` ( n + 1 ) ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) |
77 |
56 58 76
|
3eqtrd |
|- ( ( ( ph /\ n e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) |
78 |
77
|
exp31 |
|- ( ph -> ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
79 |
78
|
com12 |
|- ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( ph -> ( ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
80 |
79
|
a2d |
|- ( n e. ( ZZ>= ` ( N + 1 ) ) -> ( ( ph -> ( seq M ( x. , F ) ` n ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` n ) ) ) -> ( ph -> ( seq M ( x. , F ) ` ( n + 1 ) ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` ( n + 1 ) ) ) ) ) ) |
81 |
29 34 39 44 52 80
|
uzind4 |
|- ( k e. ( ZZ>= ` ( N + 1 ) ) -> ( ph -> ( seq M ( x. , F ) ` k ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) ) |
82 |
81
|
impcom |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( x. , F ) ` k ) = ( ( seq M ( x. , F ) ` N ) x. ( seq ( N + 1 ) ( x. , F ) ` k ) ) ) |
83 |
5 9 4 14 16 24 82
|
climmulc2 |
|- ( ph -> seq M ( x. , F ) ~~> ( ( seq M ( x. , F ) ` N ) x. A ) ) |