| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clim2ser.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
clim2ser.2 |
|- ( ph -> N e. Z ) |
| 3 |
|
clim2ser.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 4 |
|
clim2ser.5 |
|- ( ph -> seq M ( + , F ) ~~> A ) |
| 5 |
|
eqid |
|- ( ZZ>= ` ( N + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) |
| 6 |
2 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 7 |
|
peano2uz |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 8 |
6 7
|
syl |
|- ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 9 |
|
eluzelz |
|- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ZZ ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( N + 1 ) e. ZZ ) |
| 11 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 12 |
6 11
|
syl |
|- ( ph -> M e. ZZ ) |
| 13 |
1 12 3
|
serf |
|- ( ph -> seq M ( + , F ) : Z --> CC ) |
| 14 |
13 2
|
ffvelcdmd |
|- ( ph -> ( seq M ( + , F ) ` N ) e. CC ) |
| 15 |
|
seqex |
|- seq ( N + 1 ) ( + , F ) e. _V |
| 16 |
15
|
a1i |
|- ( ph -> seq ( N + 1 ) ( + , F ) e. _V ) |
| 17 |
13
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> seq M ( + , F ) : Z --> CC ) |
| 18 |
8 1
|
eleqtrrdi |
|- ( ph -> ( N + 1 ) e. Z ) |
| 19 |
1
|
uztrn2 |
|- ( ( ( N + 1 ) e. Z /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. Z ) |
| 20 |
18 19
|
sylan |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. Z ) |
| 21 |
17 20
|
ffvelcdmd |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( + , F ) ` j ) e. CC ) |
| 22 |
|
addcl |
|- ( ( k e. CC /\ x e. CC ) -> ( k + x ) e. CC ) |
| 23 |
22
|
adantl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k + x ) e. CC ) |
| 24 |
|
addass |
|- ( ( k e. CC /\ x e. CC /\ y e. CC ) -> ( ( k + x ) + y ) = ( k + ( x + y ) ) ) |
| 25 |
24
|
adantl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( k e. CC /\ x e. CC /\ y e. CC ) ) -> ( ( k + x ) + y ) = ( k + ( x + y ) ) ) |
| 26 |
|
simpr |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. ( ZZ>= ` ( N + 1 ) ) ) |
| 27 |
6
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> N e. ( ZZ>= ` M ) ) |
| 28 |
|
elfzuz |
|- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
| 29 |
28 1
|
eleqtrrdi |
|- ( k e. ( M ... j ) -> k e. Z ) |
| 30 |
29 3
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 31 |
30
|
adantlr |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
| 32 |
23 25 26 27 31
|
seqsplit |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( + , F ) ` j ) = ( ( seq M ( + , F ) ` N ) + ( seq ( N + 1 ) ( + , F ) ` j ) ) ) |
| 33 |
32
|
oveq1d |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( seq M ( + , F ) ` j ) - ( seq M ( + , F ) ` N ) ) = ( ( ( seq M ( + , F ) ` N ) + ( seq ( N + 1 ) ( + , F ) ` j ) ) - ( seq M ( + , F ) ` N ) ) ) |
| 34 |
14
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( + , F ) ` N ) e. CC ) |
| 35 |
1
|
uztrn2 |
|- ( ( ( N + 1 ) e. Z /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) |
| 36 |
18 35
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) |
| 37 |
36 3
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` k ) e. CC ) |
| 38 |
5 10 37
|
serf |
|- ( ph -> seq ( N + 1 ) ( + , F ) : ( ZZ>= ` ( N + 1 ) ) --> CC ) |
| 39 |
38
|
ffvelcdmda |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( + , F ) ` j ) e. CC ) |
| 40 |
34 39
|
pncan2d |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( ( ( seq M ( + , F ) ` N ) + ( seq ( N + 1 ) ( + , F ) ` j ) ) - ( seq M ( + , F ) ` N ) ) = ( seq ( N + 1 ) ( + , F ) ` j ) ) |
| 41 |
33 40
|
eqtr2d |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( + , F ) ` j ) = ( ( seq M ( + , F ) ` j ) - ( seq M ( + , F ) ` N ) ) ) |
| 42 |
5 10 4 14 16 21 41
|
climsubc1 |
|- ( ph -> seq ( N + 1 ) ( + , F ) ~~> ( A - ( seq M ( + , F ) ` N ) ) ) |