| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clim2ser.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | clim2ser.2 |  |-  ( ph -> N e. Z ) | 
						
							| 3 |  | clim2ser.4 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | 
						
							| 4 |  | clim2ser2.5 |  |-  ( ph -> seq ( N + 1 ) ( + , F ) ~~> A ) | 
						
							| 5 |  | eqid |  |-  ( ZZ>= ` ( N + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) | 
						
							| 6 | 2 1 | eleqtrdi |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 7 |  | peano2uz |  |-  ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 8 | 6 7 | syl |  |-  ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 9 |  | eluzelz |  |-  ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ZZ ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> ( N + 1 ) e. ZZ ) | 
						
							| 11 |  | eluzel2 |  |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ ) | 
						
							| 12 | 6 11 | syl |  |-  ( ph -> M e. ZZ ) | 
						
							| 13 | 1 12 3 | serf |  |-  ( ph -> seq M ( + , F ) : Z --> CC ) | 
						
							| 14 | 13 2 | ffvelcdmd |  |-  ( ph -> ( seq M ( + , F ) ` N ) e. CC ) | 
						
							| 15 |  | seqex |  |-  seq M ( + , F ) e. _V | 
						
							| 16 | 15 | a1i |  |-  ( ph -> seq M ( + , F ) e. _V ) | 
						
							| 17 | 8 1 | eleqtrrdi |  |-  ( ph -> ( N + 1 ) e. Z ) | 
						
							| 18 | 1 | uztrn2 |  |-  ( ( ( N + 1 ) e. Z /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) | 
						
							| 19 | 17 18 | sylan |  |-  ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) | 
						
							| 20 | 19 3 | syldan |  |-  ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` k ) e. CC ) | 
						
							| 21 | 5 10 20 | serf |  |-  ( ph -> seq ( N + 1 ) ( + , F ) : ( ZZ>= ` ( N + 1 ) ) --> CC ) | 
						
							| 22 | 21 | ffvelcdmda |  |-  ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( + , F ) ` j ) e. CC ) | 
						
							| 23 | 14 | adantr |  |-  ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( + , F ) ` N ) e. CC ) | 
						
							| 24 |  | addcl |  |-  ( ( k e. CC /\ x e. CC ) -> ( k + x ) e. CC ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k + x ) e. CC ) | 
						
							| 26 |  | addass |  |-  ( ( k e. CC /\ x e. CC /\ y e. CC ) -> ( ( k + x ) + y ) = ( k + ( x + y ) ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( k e. CC /\ x e. CC /\ y e. CC ) ) -> ( ( k + x ) + y ) = ( k + ( x + y ) ) ) | 
						
							| 28 |  | simpr |  |-  ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. ( ZZ>= ` ( N + 1 ) ) ) | 
						
							| 29 | 6 | adantr |  |-  ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> N e. ( ZZ>= ` M ) ) | 
						
							| 30 |  | elfzuz |  |-  ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) | 
						
							| 31 | 30 1 | eleqtrrdi |  |-  ( k e. ( M ... j ) -> k e. Z ) | 
						
							| 32 | 31 3 | sylan2 |  |-  ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) | 
						
							| 33 | 32 | adantlr |  |-  ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) | 
						
							| 34 | 25 27 28 29 33 | seqsplit |  |-  ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( + , F ) ` j ) = ( ( seq M ( + , F ) ` N ) + ( seq ( N + 1 ) ( + , F ) ` j ) ) ) | 
						
							| 35 | 23 22 34 | comraddd |  |-  ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( + , F ) ` j ) = ( ( seq ( N + 1 ) ( + , F ) ` j ) + ( seq M ( + , F ) ` N ) ) ) | 
						
							| 36 | 5 10 4 14 16 22 35 | climaddc1 |  |-  ( ph -> seq M ( + , F ) ~~> ( A + ( seq M ( + , F ) ` N ) ) ) |