Step |
Hyp |
Ref |
Expression |
1 |
|
clim2ser.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
clim2ser.2 |
|- ( ph -> N e. Z ) |
3 |
|
clim2ser.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
4 |
|
clim2ser2.5 |
|- ( ph -> seq ( N + 1 ) ( + , F ) ~~> A ) |
5 |
|
eqid |
|- ( ZZ>= ` ( N + 1 ) ) = ( ZZ>= ` ( N + 1 ) ) |
6 |
2 1
|
eleqtrdi |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
7 |
|
peano2uz |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
8 |
6 7
|
syl |
|- ( ph -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
9 |
|
eluzelz |
|- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ZZ ) |
10 |
8 9
|
syl |
|- ( ph -> ( N + 1 ) e. ZZ ) |
11 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
12 |
6 11
|
syl |
|- ( ph -> M e. ZZ ) |
13 |
1 12 3
|
serf |
|- ( ph -> seq M ( + , F ) : Z --> CC ) |
14 |
13 2
|
ffvelrnd |
|- ( ph -> ( seq M ( + , F ) ` N ) e. CC ) |
15 |
|
seqex |
|- seq M ( + , F ) e. _V |
16 |
15
|
a1i |
|- ( ph -> seq M ( + , F ) e. _V ) |
17 |
8 1
|
eleqtrrdi |
|- ( ph -> ( N + 1 ) e. Z ) |
18 |
1
|
uztrn2 |
|- ( ( ( N + 1 ) e. Z /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) |
19 |
17 18
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> k e. Z ) |
20 |
19 3
|
syldan |
|- ( ( ph /\ k e. ( ZZ>= ` ( N + 1 ) ) ) -> ( F ` k ) e. CC ) |
21 |
5 10 20
|
serf |
|- ( ph -> seq ( N + 1 ) ( + , F ) : ( ZZ>= ` ( N + 1 ) ) --> CC ) |
22 |
21
|
ffvelrnda |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq ( N + 1 ) ( + , F ) ` j ) e. CC ) |
23 |
14
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( + , F ) ` N ) e. CC ) |
24 |
|
addcl |
|- ( ( k e. CC /\ x e. CC ) -> ( k + x ) e. CC ) |
25 |
24
|
adantl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k + x ) e. CC ) |
26 |
|
addass |
|- ( ( k e. CC /\ x e. CC /\ y e. CC ) -> ( ( k + x ) + y ) = ( k + ( x + y ) ) ) |
27 |
26
|
adantl |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ ( k e. CC /\ x e. CC /\ y e. CC ) ) -> ( ( k + x ) + y ) = ( k + ( x + y ) ) ) |
28 |
|
simpr |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> j e. ( ZZ>= ` ( N + 1 ) ) ) |
29 |
6
|
adantr |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> N e. ( ZZ>= ` M ) ) |
30 |
|
elfzuz |
|- ( k e. ( M ... j ) -> k e. ( ZZ>= ` M ) ) |
31 |
30 1
|
eleqtrrdi |
|- ( k e. ( M ... j ) -> k e. Z ) |
32 |
31 3
|
sylan2 |
|- ( ( ph /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
33 |
32
|
adantlr |
|- ( ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) /\ k e. ( M ... j ) ) -> ( F ` k ) e. CC ) |
34 |
25 27 28 29 33
|
seqsplit |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( + , F ) ` j ) = ( ( seq M ( + , F ) ` N ) + ( seq ( N + 1 ) ( + , F ) ` j ) ) ) |
35 |
23 22 34
|
comraddd |
|- ( ( ph /\ j e. ( ZZ>= ` ( N + 1 ) ) ) -> ( seq M ( + , F ) ` j ) = ( ( seq ( N + 1 ) ( + , F ) ` j ) + ( seq M ( + , F ) ` N ) ) ) |
36 |
5 10 4 14 16 22 35
|
climaddc1 |
|- ( ph -> seq M ( + , F ) ~~> ( A + ( seq M ( + , F ) ` N ) ) ) |