Description: Limit of the absolute value of a sequence. Proposition 12-2.4(c) of Gleason p. 172. (Contributed by NM, 7-Jun-2006) (Revised by Mario Carneiro, 9-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climcn1lem.1 | |- Z = ( ZZ>= ` M ) | |
| climcn1lem.2 | |- ( ph -> F ~~> A ) | ||
| climcn1lem.4 | |- ( ph -> G e. W ) | ||
| climcn1lem.5 | |- ( ph -> M e. ZZ ) | ||
| climcn1lem.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | ||
| climabs.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) | ||
| Assertion | climabs | |- ( ph -> G ~~> ( abs ` A ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | climcn1lem.1 | |- Z = ( ZZ>= ` M ) | |
| 2 | climcn1lem.2 | |- ( ph -> F ~~> A ) | |
| 3 | climcn1lem.4 | |- ( ph -> G e. W ) | |
| 4 | climcn1lem.5 | |- ( ph -> M e. ZZ ) | |
| 5 | climcn1lem.6 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | |
| 6 | climabs.7 | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) | |
| 7 | absf | |- abs : CC --> RR | |
| 8 | ax-resscn | |- RR C_ CC | |
| 9 | fss | |- ( ( abs : CC --> RR /\ RR C_ CC ) -> abs : CC --> CC ) | |
| 10 | 7 8 9 | mp2an | |- abs : CC --> CC | 
| 11 | abscn2 | |- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( abs ` z ) - ( abs ` A ) ) ) < x ) ) | |
| 12 | 1 2 3 4 5 10 11 6 | climcn1lem | |- ( ph -> G ~~> ( abs ` A ) ) |