| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climabs0.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | climabs0.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | climabs0.3 |  |-  ( ph -> F e. V ) | 
						
							| 4 |  | climabs0.4 |  |-  ( ph -> G e. W ) | 
						
							| 5 |  | climabs0.5 |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) | 
						
							| 6 |  | climabs0.6 |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) = ( abs ` ( F ` k ) ) ) | 
						
							| 7 | 1 | uztrn2 |  |-  ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) | 
						
							| 8 |  | absidm |  |-  ( ( F ` k ) e. CC -> ( abs ` ( abs ` ( F ` k ) ) ) = ( abs ` ( F ` k ) ) ) | 
						
							| 9 | 5 8 | syl |  |-  ( ( ph /\ k e. Z ) -> ( abs ` ( abs ` ( F ` k ) ) ) = ( abs ` ( F ` k ) ) ) | 
						
							| 10 | 9 | breq1d |  |-  ( ( ph /\ k e. Z ) -> ( ( abs ` ( abs ` ( F ` k ) ) ) < x <-> ( abs ` ( F ` k ) ) < x ) ) | 
						
							| 11 | 7 10 | sylan2 |  |-  ( ( ph /\ ( j e. Z /\ k e. ( ZZ>= ` j ) ) ) -> ( ( abs ` ( abs ` ( F ` k ) ) ) < x <-> ( abs ` ( F ` k ) ) < x ) ) | 
						
							| 12 | 11 | anassrs |  |-  ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( abs ` ( abs ` ( F ` k ) ) ) < x <-> ( abs ` ( F ` k ) ) < x ) ) | 
						
							| 13 | 12 | ralbidva |  |-  ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( abs ` ( F ` k ) ) ) < x <-> A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < x ) ) | 
						
							| 14 | 13 | rexbidva |  |-  ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( abs ` ( F ` k ) ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < x ) ) | 
						
							| 15 | 14 | ralbidv |  |-  ( ph -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( abs ` ( F ` k ) ) ) < x <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < x ) ) | 
						
							| 16 | 5 | abscld |  |-  ( ( ph /\ k e. Z ) -> ( abs ` ( F ` k ) ) e. RR ) | 
						
							| 17 | 16 | recnd |  |-  ( ( ph /\ k e. Z ) -> ( abs ` ( F ` k ) ) e. CC ) | 
						
							| 18 | 1 2 4 6 17 | clim0c |  |-  ( ph -> ( G ~~> 0 <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( abs ` ( F ` k ) ) ) < x ) ) | 
						
							| 19 |  | eqidd |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) = ( F ` k ) ) | 
						
							| 20 | 1 2 3 19 5 | clim0c |  |-  ( ph -> ( F ~~> 0 <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( F ` k ) ) < x ) ) | 
						
							| 21 | 15 18 20 | 3bitr4rd |  |-  ( ph -> ( F ~~> 0 <-> G ~~> 0 ) ) |