| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climadd.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
climadd.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
climadd.4 |
|- ( ph -> F ~~> A ) |
| 4 |
|
climaddc1.5 |
|- ( ph -> C e. CC ) |
| 5 |
|
climaddc1.6 |
|- ( ph -> G e. W ) |
| 6 |
|
climaddc1.7 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
| 7 |
|
climaddc2.h |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( C + ( F ` k ) ) ) |
| 8 |
4
|
adantr |
|- ( ( ph /\ k e. Z ) -> C e. CC ) |
| 9 |
8 6 7
|
comraddd |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( ( F ` k ) + C ) ) |
| 10 |
1 2 3 4 5 6 9
|
climaddc1 |
|- ( ph -> G ~~> ( A + C ) ) |
| 11 |
|
climcl |
|- ( F ~~> A -> A e. CC ) |
| 12 |
3 11
|
syl |
|- ( ph -> A e. CC ) |
| 13 |
12 4
|
addcomd |
|- ( ph -> ( A + C ) = ( C + A ) ) |
| 14 |
10 13
|
breqtrd |
|- ( ph -> G ~~> ( C + A ) ) |