Description: Limit of a constant C added to each term of a sequence. (Contributed by NM, 24-Sep-2005) (Revised by Mario Carneiro, 3-Feb-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climadd.1 | |- Z = ( ZZ>= ` M ) |
|
climadd.2 | |- ( ph -> M e. ZZ ) |
||
climadd.4 | |- ( ph -> F ~~> A ) |
||
climaddc1.5 | |- ( ph -> C e. CC ) |
||
climaddc1.6 | |- ( ph -> G e. W ) |
||
climaddc1.7 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
climaddc2.h | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( C + ( F ` k ) ) ) |
||
Assertion | climaddc2 | |- ( ph -> G ~~> ( C + A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climadd.1 | |- Z = ( ZZ>= ` M ) |
|
2 | climadd.2 | |- ( ph -> M e. ZZ ) |
|
3 | climadd.4 | |- ( ph -> F ~~> A ) |
|
4 | climaddc1.5 | |- ( ph -> C e. CC ) |
|
5 | climaddc1.6 | |- ( ph -> G e. W ) |
|
6 | climaddc1.7 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
7 | climaddc2.h | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( C + ( F ` k ) ) ) |
|
8 | 4 | adantr | |- ( ( ph /\ k e. Z ) -> C e. CC ) |
9 | 8 6 7 | comraddd | |- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( ( F ` k ) + C ) ) |
10 | 1 2 3 4 5 6 9 | climaddc1 | |- ( ph -> G ~~> ( A + C ) ) |
11 | climcl | |- ( F ~~> A -> A e. CC ) |
|
12 | 3 11 | syl | |- ( ph -> A e. CC ) |
13 | 12 4 | addcomd | |- ( ph -> ( A + C ) = ( C + A ) ) |
14 | 10 13 | breqtrd | |- ( ph -> G ~~> ( C + A ) ) |