Metamath Proof Explorer


Theorem climcj

Description: Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of Gleason p. 172. (Contributed by NM, 7-Jun-2006) (Revised by Mario Carneiro, 9-Feb-2014)

Ref Expression
Hypotheses climcn1lem.1
|- Z = ( ZZ>= ` M )
climcn1lem.2
|- ( ph -> F ~~> A )
climcn1lem.4
|- ( ph -> G e. W )
climcn1lem.5
|- ( ph -> M e. ZZ )
climcn1lem.6
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
climcj.7
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( * ` ( F ` k ) ) )
Assertion climcj
|- ( ph -> G ~~> ( * ` A ) )

Proof

Step Hyp Ref Expression
1 climcn1lem.1
 |-  Z = ( ZZ>= ` M )
2 climcn1lem.2
 |-  ( ph -> F ~~> A )
3 climcn1lem.4
 |-  ( ph -> G e. W )
4 climcn1lem.5
 |-  ( ph -> M e. ZZ )
5 climcn1lem.6
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
6 climcj.7
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) = ( * ` ( F ` k ) ) )
7 cjf
 |-  * : CC --> CC
8 cjcn2
 |-  ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( * ` z ) - ( * ` A ) ) ) < x ) )
9 1 2 3 4 5 7 8 6 climcn1lem
 |-  ( ph -> G ~~> ( * ` A ) )