Step |
Hyp |
Ref |
Expression |
1 |
|
climcn1lem.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climcn1lem.2 |
|- ( ph -> F ~~> A ) |
3 |
|
climcn1lem.4 |
|- ( ph -> G e. W ) |
4 |
|
climcn1lem.5 |
|- ( ph -> M e. ZZ ) |
5 |
|
climcn1lem.6 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
6 |
|
climcn1lem.7 |
|- H : CC --> CC |
7 |
|
climcn1lem.8 |
|- ( ( A e. CC /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( H ` z ) - ( H ` A ) ) ) < x ) ) |
8 |
|
climcn1lem.9 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( H ` ( F ` k ) ) ) |
9 |
|
climcl |
|- ( F ~~> A -> A e. CC ) |
10 |
2 9
|
syl |
|- ( ph -> A e. CC ) |
11 |
6
|
ffvelrni |
|- ( z e. CC -> ( H ` z ) e. CC ) |
12 |
11
|
adantl |
|- ( ( ph /\ z e. CC ) -> ( H ` z ) e. CC ) |
13 |
10 7
|
sylan |
|- ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. CC ( ( abs ` ( z - A ) ) < y -> ( abs ` ( ( H ` z ) - ( H ` A ) ) ) < x ) ) |
14 |
1 4 10 12 2 3 13 5 8
|
climcn1 |
|- ( ph -> G ~~> ( H ` A ) ) |