| Step | Hyp | Ref | Expression | 
						
							| 1 |  | climcncf.1 |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | climcncf.2 |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | climcncf.4 |  |-  ( ph -> F e. ( A -cn-> B ) ) | 
						
							| 4 |  | climcncf.5 |  |-  ( ph -> G : Z --> A ) | 
						
							| 5 |  | climcncf.6 |  |-  ( ph -> G ~~> D ) | 
						
							| 6 |  | climcncf.7 |  |-  ( ph -> D e. A ) | 
						
							| 7 |  | cncff |  |-  ( F e. ( A -cn-> B ) -> F : A --> B ) | 
						
							| 8 | 3 7 | syl |  |-  ( ph -> F : A --> B ) | 
						
							| 9 | 8 | ffvelcdmda |  |-  ( ( ph /\ z e. A ) -> ( F ` z ) e. B ) | 
						
							| 10 |  | cncfrss2 |  |-  ( F e. ( A -cn-> B ) -> B C_ CC ) | 
						
							| 11 | 3 10 | syl |  |-  ( ph -> B C_ CC ) | 
						
							| 12 | 11 | sselda |  |-  ( ( ph /\ ( F ` z ) e. B ) -> ( F ` z ) e. CC ) | 
						
							| 13 | 9 12 | syldan |  |-  ( ( ph /\ z e. A ) -> ( F ` z ) e. CC ) | 
						
							| 14 | 1 | fvexi |  |-  Z e. _V | 
						
							| 15 |  | fex |  |-  ( ( G : Z --> A /\ Z e. _V ) -> G e. _V ) | 
						
							| 16 | 4 14 15 | sylancl |  |-  ( ph -> G e. _V ) | 
						
							| 17 |  | coexg |  |-  ( ( F e. ( A -cn-> B ) /\ G e. _V ) -> ( F o. G ) e. _V ) | 
						
							| 18 | 3 16 17 | syl2anc |  |-  ( ph -> ( F o. G ) e. _V ) | 
						
							| 19 |  | cncfi |  |-  ( ( F e. ( A -cn-> B ) /\ D e. A /\ x e. RR+ ) -> E. y e. RR+ A. z e. A ( ( abs ` ( z - D ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` D ) ) ) < x ) ) | 
						
							| 20 | 19 | 3expia |  |-  ( ( F e. ( A -cn-> B ) /\ D e. A ) -> ( x e. RR+ -> E. y e. RR+ A. z e. A ( ( abs ` ( z - D ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` D ) ) ) < x ) ) ) | 
						
							| 21 | 3 6 20 | syl2anc |  |-  ( ph -> ( x e. RR+ -> E. y e. RR+ A. z e. A ( ( abs ` ( z - D ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` D ) ) ) < x ) ) ) | 
						
							| 22 | 21 | imp |  |-  ( ( ph /\ x e. RR+ ) -> E. y e. RR+ A. z e. A ( ( abs ` ( z - D ) ) < y -> ( abs ` ( ( F ` z ) - ( F ` D ) ) ) < x ) ) | 
						
							| 23 | 4 | ffvelcdmda |  |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. A ) | 
						
							| 24 |  | fvco3 |  |-  ( ( G : Z --> A /\ k e. Z ) -> ( ( F o. G ) ` k ) = ( F ` ( G ` k ) ) ) | 
						
							| 25 | 4 24 | sylan |  |-  ( ( ph /\ k e. Z ) -> ( ( F o. G ) ` k ) = ( F ` ( G ` k ) ) ) | 
						
							| 26 | 1 2 6 13 5 18 22 23 25 | climcn1 |  |-  ( ph -> ( F o. G ) ~~> ( F ` D ) ) |