Step |
Hyp |
Ref |
Expression |
1 |
|
climcnds.1 |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. RR ) |
2 |
|
climcnds.2 |
|- ( ( ph /\ k e. NN ) -> 0 <_ ( F ` k ) ) |
3 |
|
climcnds.3 |
|- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
4 |
|
climcnds.4 |
|- ( ( ph /\ n e. NN0 ) -> ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
5 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
6 |
|
1zzd |
|- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> 1 e. ZZ ) |
7 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
8 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
9 |
|
2nn |
|- 2 e. NN |
10 |
|
simpr |
|- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
11 |
|
nnexpcl |
|- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
12 |
9 10 11
|
sylancr |
|- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
13 |
12
|
nnred |
|- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. RR ) |
14 |
|
fveq2 |
|- ( k = ( 2 ^ n ) -> ( F ` k ) = ( F ` ( 2 ^ n ) ) ) |
15 |
14
|
eleq1d |
|- ( k = ( 2 ^ n ) -> ( ( F ` k ) e. RR <-> ( F ` ( 2 ^ n ) ) e. RR ) ) |
16 |
1
|
ralrimiva |
|- ( ph -> A. k e. NN ( F ` k ) e. RR ) |
17 |
16
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> A. k e. NN ( F ` k ) e. RR ) |
18 |
15 17 12
|
rspcdva |
|- ( ( ph /\ n e. NN0 ) -> ( F ` ( 2 ^ n ) ) e. RR ) |
19 |
13 18
|
remulcld |
|- ( ( ph /\ n e. NN0 ) -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) e. RR ) |
20 |
4 19
|
eqeltrd |
|- ( ( ph /\ n e. NN0 ) -> ( G ` n ) e. RR ) |
21 |
8 20
|
sylan2 |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. RR ) |
22 |
5 7 21
|
serfre |
|- ( ph -> seq 1 ( + , G ) : NN --> RR ) |
23 |
22
|
adantr |
|- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 1 ( + , G ) : NN --> RR ) |
24 |
|
simpr |
|- ( ( ph /\ j e. NN ) -> j e. NN ) |
25 |
24 5
|
eleqtrdi |
|- ( ( ph /\ j e. NN ) -> j e. ( ZZ>= ` 1 ) ) |
26 |
|
nnz |
|- ( j e. NN -> j e. ZZ ) |
27 |
26
|
adantl |
|- ( ( ph /\ j e. NN ) -> j e. ZZ ) |
28 |
|
uzid |
|- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
29 |
|
peano2uz |
|- ( j e. ( ZZ>= ` j ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) |
30 |
27 28 29
|
3syl |
|- ( ( ph /\ j e. NN ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) |
31 |
|
simpl |
|- ( ( ph /\ j e. NN ) -> ph ) |
32 |
|
elfznn |
|- ( n e. ( 1 ... ( j + 1 ) ) -> n e. NN ) |
33 |
31 32 21
|
syl2an |
|- ( ( ( ph /\ j e. NN ) /\ n e. ( 1 ... ( j + 1 ) ) ) -> ( G ` n ) e. RR ) |
34 |
|
simpll |
|- ( ( ( ph /\ j e. NN ) /\ n e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> ph ) |
35 |
|
elfz1eq |
|- ( n e. ( ( j + 1 ) ... ( j + 1 ) ) -> n = ( j + 1 ) ) |
36 |
35
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ n e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> n = ( j + 1 ) ) |
37 |
|
nnnn0 |
|- ( j e. NN -> j e. NN0 ) |
38 |
|
peano2nn0 |
|- ( j e. NN0 -> ( j + 1 ) e. NN0 ) |
39 |
37 38
|
syl |
|- ( j e. NN -> ( j + 1 ) e. NN0 ) |
40 |
39
|
ad2antlr |
|- ( ( ( ph /\ j e. NN ) /\ n e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> ( j + 1 ) e. NN0 ) |
41 |
36 40
|
eqeltrd |
|- ( ( ( ph /\ j e. NN ) /\ n e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> n e. NN0 ) |
42 |
12
|
nnnn0d |
|- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. NN0 ) |
43 |
42
|
nn0ge0d |
|- ( ( ph /\ n e. NN0 ) -> 0 <_ ( 2 ^ n ) ) |
44 |
14
|
breq2d |
|- ( k = ( 2 ^ n ) -> ( 0 <_ ( F ` k ) <-> 0 <_ ( F ` ( 2 ^ n ) ) ) ) |
45 |
2
|
ralrimiva |
|- ( ph -> A. k e. NN 0 <_ ( F ` k ) ) |
46 |
45
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> A. k e. NN 0 <_ ( F ` k ) ) |
47 |
44 46 12
|
rspcdva |
|- ( ( ph /\ n e. NN0 ) -> 0 <_ ( F ` ( 2 ^ n ) ) ) |
48 |
13 18 43 47
|
mulge0d |
|- ( ( ph /\ n e. NN0 ) -> 0 <_ ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
49 |
48 4
|
breqtrrd |
|- ( ( ph /\ n e. NN0 ) -> 0 <_ ( G ` n ) ) |
50 |
34 41 49
|
syl2anc |
|- ( ( ( ph /\ j e. NN ) /\ n e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> 0 <_ ( G ` n ) ) |
51 |
25 30 33 50
|
sermono |
|- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) <_ ( seq 1 ( + , G ) ` ( j + 1 ) ) ) |
52 |
51
|
adantlr |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) <_ ( seq 1 ( + , G ) ` ( j + 1 ) ) ) |
53 |
|
2re |
|- 2 e. RR |
54 |
|
eqidd |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
55 |
1
|
adantlr |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ k e. NN ) -> ( F ` k ) e. RR ) |
56 |
|
simpr |
|- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 1 ( + , F ) e. dom ~~> ) |
57 |
5 6 54 55 56
|
isumrecl |
|- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> sum_ k e. NN ( F ` k ) e. RR ) |
58 |
|
remulcl |
|- ( ( 2 e. RR /\ sum_ k e. NN ( F ` k ) e. RR ) -> ( 2 x. sum_ k e. NN ( F ` k ) ) e. RR ) |
59 |
53 57 58
|
sylancr |
|- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> ( 2 x. sum_ k e. NN ( F ` k ) ) e. RR ) |
60 |
23
|
ffvelrnda |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) e. RR ) |
61 |
5 7 1
|
serfre |
|- ( ph -> seq 1 ( + , F ) : NN --> RR ) |
62 |
61
|
ad2antrr |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> seq 1 ( + , F ) : NN --> RR ) |
63 |
37
|
adantl |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> j e. NN0 ) |
64 |
|
nnexpcl |
|- ( ( 2 e. NN /\ j e. NN0 ) -> ( 2 ^ j ) e. NN ) |
65 |
9 63 64
|
sylancr |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 2 ^ j ) e. NN ) |
66 |
62 65
|
ffvelrnd |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( 2 ^ j ) ) e. RR ) |
67 |
|
remulcl |
|- ( ( 2 e. RR /\ ( seq 1 ( + , F ) ` ( 2 ^ j ) ) e. RR ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) e. RR ) |
68 |
53 66 67
|
sylancr |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) e. RR ) |
69 |
59
|
adantr |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 2 x. sum_ k e. NN ( F ` k ) ) e. RR ) |
70 |
1 2 3 4
|
climcndslem2 |
|- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) ) |
71 |
70
|
adantlr |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) ) |
72 |
|
eqidd |
|- ( ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) /\ k e. ( 1 ... ( 2 ^ j ) ) ) -> ( F ` k ) = ( F ` k ) ) |
73 |
65 5
|
eleqtrdi |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 2 ^ j ) e. ( ZZ>= ` 1 ) ) |
74 |
|
simpll |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ph ) |
75 |
|
elfznn |
|- ( k e. ( 1 ... ( 2 ^ j ) ) -> k e. NN ) |
76 |
1
|
recnd |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. CC ) |
77 |
74 75 76
|
syl2an |
|- ( ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) /\ k e. ( 1 ... ( 2 ^ j ) ) ) -> ( F ` k ) e. CC ) |
78 |
72 73 77
|
fsumser |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> sum_ k e. ( 1 ... ( 2 ^ j ) ) ( F ` k ) = ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) |
79 |
|
1zzd |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> 1 e. ZZ ) |
80 |
|
fzfid |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 1 ... ( 2 ^ j ) ) e. Fin ) |
81 |
75
|
ssriv |
|- ( 1 ... ( 2 ^ j ) ) C_ NN |
82 |
81
|
a1i |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 1 ... ( 2 ^ j ) ) C_ NN ) |
83 |
|
eqidd |
|- ( ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) /\ k e. NN ) -> ( F ` k ) = ( F ` k ) ) |
84 |
1
|
ad4ant14 |
|- ( ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) /\ k e. NN ) -> ( F ` k ) e. RR ) |
85 |
2
|
ad4ant14 |
|- ( ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) /\ k e. NN ) -> 0 <_ ( F ` k ) ) |
86 |
|
simplr |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> seq 1 ( + , F ) e. dom ~~> ) |
87 |
5 79 80 82 83 84 85 86
|
isumless |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> sum_ k e. ( 1 ... ( 2 ^ j ) ) ( F ` k ) <_ sum_ k e. NN ( F ` k ) ) |
88 |
78 87
|
eqbrtrrd |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( 2 ^ j ) ) <_ sum_ k e. NN ( F ` k ) ) |
89 |
57
|
adantr |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> sum_ k e. NN ( F ` k ) e. RR ) |
90 |
|
2rp |
|- 2 e. RR+ |
91 |
90
|
a1i |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> 2 e. RR+ ) |
92 |
66 89 91
|
lemul2d |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( ( seq 1 ( + , F ) ` ( 2 ^ j ) ) <_ sum_ k e. NN ( F ` k ) <-> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) <_ ( 2 x. sum_ k e. NN ( F ` k ) ) ) ) |
93 |
88 92
|
mpbid |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) <_ ( 2 x. sum_ k e. NN ( F ` k ) ) ) |
94 |
60 68 69 71 93
|
letrd |
|- ( ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) <_ ( 2 x. sum_ k e. NN ( F ` k ) ) ) |
95 |
94
|
ralrimiva |
|- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> A. j e. NN ( seq 1 ( + , G ) ` j ) <_ ( 2 x. sum_ k e. NN ( F ` k ) ) ) |
96 |
|
brralrspcev |
|- ( ( ( 2 x. sum_ k e. NN ( F ` k ) ) e. RR /\ A. j e. NN ( seq 1 ( + , G ) ` j ) <_ ( 2 x. sum_ k e. NN ( F ` k ) ) ) -> E. x e. RR A. j e. NN ( seq 1 ( + , G ) ` j ) <_ x ) |
97 |
59 95 96
|
syl2anc |
|- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> E. x e. RR A. j e. NN ( seq 1 ( + , G ) ` j ) <_ x ) |
98 |
5 6 23 52 97
|
climsup |
|- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 1 ( + , G ) ~~> sup ( ran seq 1 ( + , G ) , RR , < ) ) |
99 |
|
climrel |
|- Rel ~~> |
100 |
99
|
releldmi |
|- ( seq 1 ( + , G ) ~~> sup ( ran seq 1 ( + , G ) , RR , < ) -> seq 1 ( + , G ) e. dom ~~> ) |
101 |
98 100
|
syl |
|- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 1 ( + , G ) e. dom ~~> ) |
102 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
103 |
|
1nn0 |
|- 1 e. NN0 |
104 |
103
|
a1i |
|- ( ph -> 1 e. NN0 ) |
105 |
20
|
recnd |
|- ( ( ph /\ n e. NN0 ) -> ( G ` n ) e. CC ) |
106 |
102 104 105
|
iserex |
|- ( ph -> ( seq 0 ( + , G ) e. dom ~~> <-> seq 1 ( + , G ) e. dom ~~> ) ) |
107 |
106
|
biimpar |
|- ( ( ph /\ seq 1 ( + , G ) e. dom ~~> ) -> seq 0 ( + , G ) e. dom ~~> ) |
108 |
101 107
|
syldan |
|- ( ( ph /\ seq 1 ( + , F ) e. dom ~~> ) -> seq 0 ( + , G ) e. dom ~~> ) |
109 |
|
1zzd |
|- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> 1 e. ZZ ) |
110 |
61
|
adantr |
|- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> seq 1 ( + , F ) : NN --> RR ) |
111 |
|
elfznn |
|- ( k e. ( 1 ... ( j + 1 ) ) -> k e. NN ) |
112 |
31 111 1
|
syl2an |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... ( j + 1 ) ) ) -> ( F ` k ) e. RR ) |
113 |
|
simpll |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> ph ) |
114 |
|
peano2nn |
|- ( j e. NN -> ( j + 1 ) e. NN ) |
115 |
114
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( j + 1 ) e. NN ) |
116 |
|
elfz1eq |
|- ( k e. ( ( j + 1 ) ... ( j + 1 ) ) -> k = ( j + 1 ) ) |
117 |
|
eleq1 |
|- ( k = ( j + 1 ) -> ( k e. NN <-> ( j + 1 ) e. NN ) ) |
118 |
117
|
biimparc |
|- ( ( ( j + 1 ) e. NN /\ k = ( j + 1 ) ) -> k e. NN ) |
119 |
115 116 118
|
syl2an |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> k e. NN ) |
120 |
113 119 2
|
syl2anc |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( ( j + 1 ) ... ( j + 1 ) ) ) -> 0 <_ ( F ` k ) ) |
121 |
25 30 112 120
|
sermono |
|- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) <_ ( seq 1 ( + , F ) ` ( j + 1 ) ) ) |
122 |
121
|
adantlr |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) <_ ( seq 1 ( + , F ) ` ( j + 1 ) ) ) |
123 |
|
0zd |
|- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> 0 e. ZZ ) |
124 |
|
eqidd |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ n e. NN0 ) -> ( G ` n ) = ( G ` n ) ) |
125 |
20
|
adantlr |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ n e. NN0 ) -> ( G ` n ) e. RR ) |
126 |
|
simpr |
|- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> seq 0 ( + , G ) e. dom ~~> ) |
127 |
102 123 124 125 126
|
isumrecl |
|- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> sum_ n e. NN0 ( G ` n ) e. RR ) |
128 |
110
|
ffvelrnda |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) e. RR ) |
129 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
130 |
102 129 20
|
serfre |
|- ( ph -> seq 0 ( + , G ) : NN0 --> RR ) |
131 |
130
|
adantr |
|- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> seq 0 ( + , G ) : NN0 --> RR ) |
132 |
|
ffvelrn |
|- ( ( seq 0 ( + , G ) : NN0 --> RR /\ j e. NN0 ) -> ( seq 0 ( + , G ) ` j ) e. RR ) |
133 |
131 37 132
|
syl2an |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 0 ( + , G ) ` j ) e. RR ) |
134 |
127
|
adantr |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> sum_ n e. NN0 ( G ` n ) e. RR ) |
135 |
110
|
adantr |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> seq 1 ( + , F ) : NN --> RR ) |
136 |
|
simpr |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> j e. NN ) |
137 |
26
|
adantl |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> j e. ZZ ) |
138 |
39
|
adantl |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( j + 1 ) e. NN0 ) |
139 |
138
|
nn0red |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( j + 1 ) e. RR ) |
140 |
|
nnexpcl |
|- ( ( 2 e. NN /\ ( j + 1 ) e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
141 |
9 138 140
|
sylancr |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
142 |
141
|
nnred |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. RR ) |
143 |
|
2z |
|- 2 e. ZZ |
144 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
145 |
143 144
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
146 |
|
bernneq3 |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ ( j + 1 ) e. NN0 ) -> ( j + 1 ) < ( 2 ^ ( j + 1 ) ) ) |
147 |
145 138 146
|
sylancr |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( j + 1 ) < ( 2 ^ ( j + 1 ) ) ) |
148 |
139 142 147
|
ltled |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( j + 1 ) <_ ( 2 ^ ( j + 1 ) ) ) |
149 |
137
|
peano2zd |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( j + 1 ) e. ZZ ) |
150 |
141
|
nnzd |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. ZZ ) |
151 |
|
eluz |
|- ( ( ( j + 1 ) e. ZZ /\ ( 2 ^ ( j + 1 ) ) e. ZZ ) -> ( ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` ( j + 1 ) ) <-> ( j + 1 ) <_ ( 2 ^ ( j + 1 ) ) ) ) |
152 |
149 150 151
|
syl2anc |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` ( j + 1 ) ) <-> ( j + 1 ) <_ ( 2 ^ ( j + 1 ) ) ) ) |
153 |
148 152
|
mpbird |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` ( j + 1 ) ) ) |
154 |
|
eluzp1m1 |
|- ( ( j e. ZZ /\ ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` ( j + 1 ) ) ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( ZZ>= ` j ) ) |
155 |
137 153 154
|
syl2anc |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( ZZ>= ` j ) ) |
156 |
|
eluznn |
|- ( ( j e. NN /\ ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( ZZ>= ` j ) ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. NN ) |
157 |
136 155 156
|
syl2anc |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. NN ) |
158 |
135 157
|
ffvelrnd |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) e. RR ) |
159 |
25
|
adantlr |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> j e. ( ZZ>= ` 1 ) ) |
160 |
|
simpll |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ph ) |
161 |
|
elfznn |
|- ( k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) -> k e. NN ) |
162 |
160 161 1
|
syl2an |
|- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> ( F ` k ) e. RR ) |
163 |
114
|
adantl |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( j + 1 ) e. NN ) |
164 |
|
elfzuz |
|- ( k e. ( ( j + 1 ) ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) -> k e. ( ZZ>= ` ( j + 1 ) ) ) |
165 |
|
eluznn |
|- ( ( ( j + 1 ) e. NN /\ k e. ( ZZ>= ` ( j + 1 ) ) ) -> k e. NN ) |
166 |
163 164 165
|
syl2an |
|- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ k e. ( ( j + 1 ) ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> k e. NN ) |
167 |
160 166 2
|
syl2an2r |
|- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ k e. ( ( j + 1 ) ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> 0 <_ ( F ` k ) ) |
168 |
159 155 162 167
|
sermono |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) <_ ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) |
169 |
37
|
adantl |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> j e. NN0 ) |
170 |
1 2 3 4
|
climcndslem1 |
|- ( ( ph /\ j e. NN0 ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) ) |
171 |
160 169 170
|
syl2anc |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) ) |
172 |
128 158 133 168 171
|
letrd |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) <_ ( seq 0 ( + , G ) ` j ) ) |
173 |
|
eqidd |
|- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ n e. ( 0 ... j ) ) -> ( G ` n ) = ( G ` n ) ) |
174 |
169 102
|
eleqtrdi |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> j e. ( ZZ>= ` 0 ) ) |
175 |
|
elfznn0 |
|- ( n e. ( 0 ... j ) -> n e. NN0 ) |
176 |
160 175 105
|
syl2an |
|- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ n e. ( 0 ... j ) ) -> ( G ` n ) e. CC ) |
177 |
173 174 176
|
fsumser |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> sum_ n e. ( 0 ... j ) ( G ` n ) = ( seq 0 ( + , G ) ` j ) ) |
178 |
|
0zd |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> 0 e. ZZ ) |
179 |
|
fzfid |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( 0 ... j ) e. Fin ) |
180 |
175
|
ssriv |
|- ( 0 ... j ) C_ NN0 |
181 |
180
|
a1i |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( 0 ... j ) C_ NN0 ) |
182 |
|
eqidd |
|- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ n e. NN0 ) -> ( G ` n ) = ( G ` n ) ) |
183 |
20
|
ad4ant14 |
|- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ n e. NN0 ) -> ( G ` n ) e. RR ) |
184 |
49
|
ad4ant14 |
|- ( ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) /\ n e. NN0 ) -> 0 <_ ( G ` n ) ) |
185 |
|
simplr |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> seq 0 ( + , G ) e. dom ~~> ) |
186 |
102 178 179 181 182 183 184 185
|
isumless |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> sum_ n e. ( 0 ... j ) ( G ` n ) <_ sum_ n e. NN0 ( G ` n ) ) |
187 |
177 186
|
eqbrtrrd |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 0 ( + , G ) ` j ) <_ sum_ n e. NN0 ( G ` n ) ) |
188 |
128 133 134 172 187
|
letrd |
|- ( ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) <_ sum_ n e. NN0 ( G ` n ) ) |
189 |
188
|
ralrimiva |
|- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> A. j e. NN ( seq 1 ( + , F ) ` j ) <_ sum_ n e. NN0 ( G ` n ) ) |
190 |
|
brralrspcev |
|- ( ( sum_ n e. NN0 ( G ` n ) e. RR /\ A. j e. NN ( seq 1 ( + , F ) ` j ) <_ sum_ n e. NN0 ( G ` n ) ) -> E. x e. RR A. j e. NN ( seq 1 ( + , F ) ` j ) <_ x ) |
191 |
127 189 190
|
syl2anc |
|- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> E. x e. RR A. j e. NN ( seq 1 ( + , F ) ` j ) <_ x ) |
192 |
5 109 110 122 191
|
climsup |
|- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> seq 1 ( + , F ) ~~> sup ( ran seq 1 ( + , F ) , RR , < ) ) |
193 |
99
|
releldmi |
|- ( seq 1 ( + , F ) ~~> sup ( ran seq 1 ( + , F ) , RR , < ) -> seq 1 ( + , F ) e. dom ~~> ) |
194 |
192 193
|
syl |
|- ( ( ph /\ seq 0 ( + , G ) e. dom ~~> ) -> seq 1 ( + , F ) e. dom ~~> ) |
195 |
108 194
|
impbida |
|- ( ph -> ( seq 1 ( + , F ) e. dom ~~> <-> seq 0 ( + , G ) e. dom ~~> ) ) |