Step |
Hyp |
Ref |
Expression |
1 |
|
climcnds.1 |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. RR ) |
2 |
|
climcnds.2 |
|- ( ( ph /\ k e. NN ) -> 0 <_ ( F ` k ) ) |
3 |
|
climcnds.3 |
|- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
4 |
|
climcnds.4 |
|- ( ( ph /\ n e. NN0 ) -> ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
5 |
|
oveq1 |
|- ( x = 0 -> ( x + 1 ) = ( 0 + 1 ) ) |
6 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
7 |
5 6
|
eqtrdi |
|- ( x = 0 -> ( x + 1 ) = 1 ) |
8 |
7
|
oveq2d |
|- ( x = 0 -> ( 2 ^ ( x + 1 ) ) = ( 2 ^ 1 ) ) |
9 |
|
2cn |
|- 2 e. CC |
10 |
|
exp1 |
|- ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) |
11 |
9 10
|
ax-mp |
|- ( 2 ^ 1 ) = 2 |
12 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
13 |
11 12
|
eqtri |
|- ( 2 ^ 1 ) = ( 1 + 1 ) |
14 |
8 13
|
eqtrdi |
|- ( x = 0 -> ( 2 ^ ( x + 1 ) ) = ( 1 + 1 ) ) |
15 |
14
|
oveq1d |
|- ( x = 0 -> ( ( 2 ^ ( x + 1 ) ) - 1 ) = ( ( 1 + 1 ) - 1 ) ) |
16 |
|
ax-1cn |
|- 1 e. CC |
17 |
16 16
|
pncan3oi |
|- ( ( 1 + 1 ) - 1 ) = 1 |
18 |
15 17
|
eqtrdi |
|- ( x = 0 -> ( ( 2 ^ ( x + 1 ) ) - 1 ) = 1 ) |
19 |
18
|
fveq2d |
|- ( x = 0 -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) = ( seq 1 ( + , F ) ` 1 ) ) |
20 |
|
fveq2 |
|- ( x = 0 -> ( seq 0 ( + , G ) ` x ) = ( seq 0 ( + , G ) ` 0 ) ) |
21 |
19 20
|
breq12d |
|- ( x = 0 -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) <-> ( seq 1 ( + , F ) ` 1 ) <_ ( seq 0 ( + , G ) ` 0 ) ) ) |
22 |
21
|
imbi2d |
|- ( x = 0 -> ( ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) ) <-> ( ph -> ( seq 1 ( + , F ) ` 1 ) <_ ( seq 0 ( + , G ) ` 0 ) ) ) ) |
23 |
|
oveq1 |
|- ( x = j -> ( x + 1 ) = ( j + 1 ) ) |
24 |
23
|
oveq2d |
|- ( x = j -> ( 2 ^ ( x + 1 ) ) = ( 2 ^ ( j + 1 ) ) ) |
25 |
24
|
fvoveq1d |
|- ( x = j -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) = ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) |
26 |
|
fveq2 |
|- ( x = j -> ( seq 0 ( + , G ) ` x ) = ( seq 0 ( + , G ) ` j ) ) |
27 |
25 26
|
breq12d |
|- ( x = j -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) <-> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) ) ) |
28 |
27
|
imbi2d |
|- ( x = j -> ( ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) ) <-> ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) ) ) ) |
29 |
|
oveq1 |
|- ( x = ( j + 1 ) -> ( x + 1 ) = ( ( j + 1 ) + 1 ) ) |
30 |
29
|
oveq2d |
|- ( x = ( j + 1 ) -> ( 2 ^ ( x + 1 ) ) = ( 2 ^ ( ( j + 1 ) + 1 ) ) ) |
31 |
30
|
fvoveq1d |
|- ( x = ( j + 1 ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) = ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) |
32 |
|
fveq2 |
|- ( x = ( j + 1 ) -> ( seq 0 ( + , G ) ` x ) = ( seq 0 ( + , G ) ` ( j + 1 ) ) ) |
33 |
31 32
|
breq12d |
|- ( x = ( j + 1 ) -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) <-> ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` ( j + 1 ) ) ) ) |
34 |
33
|
imbi2d |
|- ( x = ( j + 1 ) -> ( ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) ) <-> ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` ( j + 1 ) ) ) ) ) |
35 |
|
oveq1 |
|- ( x = N -> ( x + 1 ) = ( N + 1 ) ) |
36 |
35
|
oveq2d |
|- ( x = N -> ( 2 ^ ( x + 1 ) ) = ( 2 ^ ( N + 1 ) ) ) |
37 |
36
|
fvoveq1d |
|- ( x = N -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) = ( seq 1 ( + , F ) ` ( ( 2 ^ ( N + 1 ) ) - 1 ) ) ) |
38 |
|
fveq2 |
|- ( x = N -> ( seq 0 ( + , G ) ` x ) = ( seq 0 ( + , G ) ` N ) ) |
39 |
37 38
|
breq12d |
|- ( x = N -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) <-> ( seq 1 ( + , F ) ` ( ( 2 ^ ( N + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` N ) ) ) |
40 |
39
|
imbi2d |
|- ( x = N -> ( ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( x + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` x ) ) <-> ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( N + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` N ) ) ) ) |
41 |
|
fveq2 |
|- ( k = 1 -> ( F ` k ) = ( F ` 1 ) ) |
42 |
41
|
eleq1d |
|- ( k = 1 -> ( ( F ` k ) e. RR <-> ( F ` 1 ) e. RR ) ) |
43 |
1
|
ralrimiva |
|- ( ph -> A. k e. NN ( F ` k ) e. RR ) |
44 |
|
1nn |
|- 1 e. NN |
45 |
44
|
a1i |
|- ( ph -> 1 e. NN ) |
46 |
42 43 45
|
rspcdva |
|- ( ph -> ( F ` 1 ) e. RR ) |
47 |
46
|
leidd |
|- ( ph -> ( F ` 1 ) <_ ( F ` 1 ) ) |
48 |
46
|
recnd |
|- ( ph -> ( F ` 1 ) e. CC ) |
49 |
48
|
mulid2d |
|- ( ph -> ( 1 x. ( F ` 1 ) ) = ( F ` 1 ) ) |
50 |
47 49
|
breqtrrd |
|- ( ph -> ( F ` 1 ) <_ ( 1 x. ( F ` 1 ) ) ) |
51 |
|
1z |
|- 1 e. ZZ |
52 |
|
eqidd |
|- ( ph -> ( F ` 1 ) = ( F ` 1 ) ) |
53 |
51 52
|
seq1i |
|- ( ph -> ( seq 1 ( + , F ) ` 1 ) = ( F ` 1 ) ) |
54 |
|
0z |
|- 0 e. ZZ |
55 |
|
fveq2 |
|- ( n = 0 -> ( G ` n ) = ( G ` 0 ) ) |
56 |
|
oveq2 |
|- ( n = 0 -> ( 2 ^ n ) = ( 2 ^ 0 ) ) |
57 |
|
exp0 |
|- ( 2 e. CC -> ( 2 ^ 0 ) = 1 ) |
58 |
9 57
|
ax-mp |
|- ( 2 ^ 0 ) = 1 |
59 |
56 58
|
eqtrdi |
|- ( n = 0 -> ( 2 ^ n ) = 1 ) |
60 |
59
|
fveq2d |
|- ( n = 0 -> ( F ` ( 2 ^ n ) ) = ( F ` 1 ) ) |
61 |
59 60
|
oveq12d |
|- ( n = 0 -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) = ( 1 x. ( F ` 1 ) ) ) |
62 |
55 61
|
eqeq12d |
|- ( n = 0 -> ( ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) <-> ( G ` 0 ) = ( 1 x. ( F ` 1 ) ) ) ) |
63 |
4
|
ralrimiva |
|- ( ph -> A. n e. NN0 ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
64 |
|
0nn0 |
|- 0 e. NN0 |
65 |
64
|
a1i |
|- ( ph -> 0 e. NN0 ) |
66 |
62 63 65
|
rspcdva |
|- ( ph -> ( G ` 0 ) = ( 1 x. ( F ` 1 ) ) ) |
67 |
54 66
|
seq1i |
|- ( ph -> ( seq 0 ( + , G ) ` 0 ) = ( 1 x. ( F ` 1 ) ) ) |
68 |
50 53 67
|
3brtr4d |
|- ( ph -> ( seq 1 ( + , F ) ` 1 ) <_ ( seq 0 ( + , G ) ` 0 ) ) |
69 |
|
fzfid |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) e. Fin ) |
70 |
|
simpl |
|- ( ( ph /\ j e. NN0 ) -> ph ) |
71 |
|
2nn |
|- 2 e. NN |
72 |
|
peano2nn0 |
|- ( j e. NN0 -> ( j + 1 ) e. NN0 ) |
73 |
72
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( j + 1 ) e. NN0 ) |
74 |
|
nnexpcl |
|- ( ( 2 e. NN /\ ( j + 1 ) e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
75 |
71 73 74
|
sylancr |
|- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
76 |
|
elfzuz |
|- ( k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) -> k e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) |
77 |
|
eluznn |
|- ( ( ( 2 ^ ( j + 1 ) ) e. NN /\ k e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) -> k e. NN ) |
78 |
75 76 77
|
syl2an |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) -> k e. NN ) |
79 |
70 78 1
|
syl2an2r |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) -> ( F ` k ) e. RR ) |
80 |
|
fveq2 |
|- ( k = ( 2 ^ ( j + 1 ) ) -> ( F ` k ) = ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
81 |
80
|
eleq1d |
|- ( k = ( 2 ^ ( j + 1 ) ) -> ( ( F ` k ) e. RR <-> ( F ` ( 2 ^ ( j + 1 ) ) ) e. RR ) ) |
82 |
43
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> A. k e. NN ( F ` k ) e. RR ) |
83 |
81 82 75
|
rspcdva |
|- ( ( ph /\ j e. NN0 ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) e. RR ) |
84 |
83
|
adantr |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) e. RR ) |
85 |
|
simpr |
|- ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) -> n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) |
86 |
|
simplll |
|- ( ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... n ) ) -> ph ) |
87 |
75
|
adantr |
|- ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
88 |
|
elfzuz |
|- ( k e. ( ( 2 ^ ( j + 1 ) ) ... n ) -> k e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) |
89 |
87 88 77
|
syl2an |
|- ( ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... n ) ) -> k e. NN ) |
90 |
86 89 1
|
syl2anc |
|- ( ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... n ) ) -> ( F ` k ) e. RR ) |
91 |
|
simplll |
|- ( ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( n - 1 ) ) ) -> ph ) |
92 |
|
elfzuz |
|- ( k e. ( ( 2 ^ ( j + 1 ) ) ... ( n - 1 ) ) -> k e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) |
93 |
87 92 77
|
syl2an |
|- ( ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( n - 1 ) ) ) -> k e. NN ) |
94 |
91 93 3
|
syl2anc |
|- ( ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( n - 1 ) ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
95 |
85 90 94
|
monoord2 |
|- ( ( ( ph /\ j e. NN0 ) /\ n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` n ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
96 |
95
|
ralrimiva |
|- ( ( ph /\ j e. NN0 ) -> A. n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ( F ` n ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
97 |
|
fveq2 |
|- ( n = k -> ( F ` n ) = ( F ` k ) ) |
98 |
97
|
breq1d |
|- ( n = k -> ( ( F ` n ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) <-> ( F ` k ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
99 |
98
|
rspccva |
|- ( ( A. n e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ( F ` n ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) /\ k e. ( ZZ>= ` ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` k ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
100 |
96 76 99
|
syl2an |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) -> ( F ` k ) <_ ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
101 |
69 79 84 100
|
fsumle |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) <_ sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
102 |
|
fzfid |
|- ( ( ph /\ j e. NN0 ) -> ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) e. Fin ) |
103 |
|
hashcl |
|- ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) e. Fin -> ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) e. NN0 ) |
104 |
102 103
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) e. NN0 ) |
105 |
104
|
nn0cnd |
|- ( ( ph /\ j e. NN0 ) -> ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) e. CC ) |
106 |
75
|
nnred |
|- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. RR ) |
107 |
106
|
recnd |
|- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. CC ) |
108 |
|
hashcl |
|- ( ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) e. Fin -> ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) e. NN0 ) |
109 |
69 108
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) e. NN0 ) |
110 |
109
|
nn0cnd |
|- ( ( ph /\ j e. NN0 ) -> ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) e. CC ) |
111 |
|
2z |
|- 2 e. ZZ |
112 |
|
zexpcl |
|- ( ( 2 e. ZZ /\ ( j + 1 ) e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. ZZ ) |
113 |
111 73 112
|
sylancr |
|- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. ZZ ) |
114 |
|
2re |
|- 2 e. RR |
115 |
|
1le2 |
|- 1 <_ 2 |
116 |
|
nn0p1nn |
|- ( j e. NN0 -> ( j + 1 ) e. NN ) |
117 |
116
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( j + 1 ) e. NN ) |
118 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
119 |
117 118
|
eleqtrdi |
|- ( ( ph /\ j e. NN0 ) -> ( j + 1 ) e. ( ZZ>= ` 1 ) ) |
120 |
|
leexp2a |
|- ( ( 2 e. RR /\ 1 <_ 2 /\ ( j + 1 ) e. ( ZZ>= ` 1 ) ) -> ( 2 ^ 1 ) <_ ( 2 ^ ( j + 1 ) ) ) |
121 |
114 115 119 120
|
mp3an12i |
|- ( ( ph /\ j e. NN0 ) -> ( 2 ^ 1 ) <_ ( 2 ^ ( j + 1 ) ) ) |
122 |
11 121
|
eqbrtrrid |
|- ( ( ph /\ j e. NN0 ) -> 2 <_ ( 2 ^ ( j + 1 ) ) ) |
123 |
111
|
eluz1i |
|- ( ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` 2 ) <-> ( ( 2 ^ ( j + 1 ) ) e. ZZ /\ 2 <_ ( 2 ^ ( j + 1 ) ) ) ) |
124 |
113 122 123
|
sylanbrc |
|- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` 2 ) ) |
125 |
|
uz2m1nn |
|- ( ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` 2 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. NN ) |
126 |
124 125
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. NN ) |
127 |
126 118
|
eleqtrdi |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( ZZ>= ` 1 ) ) |
128 |
|
peano2zm |
|- ( ( 2 ^ ( j + 1 ) ) e. ZZ -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ZZ ) |
129 |
113 128
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ZZ ) |
130 |
|
peano2nn0 |
|- ( ( j + 1 ) e. NN0 -> ( ( j + 1 ) + 1 ) e. NN0 ) |
131 |
73 130
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( ( j + 1 ) + 1 ) e. NN0 ) |
132 |
|
zexpcl |
|- ( ( 2 e. ZZ /\ ( ( j + 1 ) + 1 ) e. NN0 ) -> ( 2 ^ ( ( j + 1 ) + 1 ) ) e. ZZ ) |
133 |
111 131 132
|
sylancr |
|- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( ( j + 1 ) + 1 ) ) e. ZZ ) |
134 |
|
peano2zm |
|- ( ( 2 ^ ( ( j + 1 ) + 1 ) ) e. ZZ -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ZZ ) |
135 |
133 134
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ZZ ) |
136 |
113
|
zred |
|- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. RR ) |
137 |
133
|
zred |
|- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( ( j + 1 ) + 1 ) ) e. RR ) |
138 |
|
1red |
|- ( ( ph /\ j e. NN0 ) -> 1 e. RR ) |
139 |
73
|
nn0zd |
|- ( ( ph /\ j e. NN0 ) -> ( j + 1 ) e. ZZ ) |
140 |
|
uzid |
|- ( ( j + 1 ) e. ZZ -> ( j + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) |
141 |
|
peano2uz |
|- ( ( j + 1 ) e. ( ZZ>= ` ( j + 1 ) ) -> ( ( j + 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) |
142 |
|
leexp2a |
|- ( ( 2 e. RR /\ 1 <_ 2 /\ ( ( j + 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) ) -> ( 2 ^ ( j + 1 ) ) <_ ( 2 ^ ( ( j + 1 ) + 1 ) ) ) |
143 |
114 115 142
|
mp3an12 |
|- ( ( ( j + 1 ) + 1 ) e. ( ZZ>= ` ( j + 1 ) ) -> ( 2 ^ ( j + 1 ) ) <_ ( 2 ^ ( ( j + 1 ) + 1 ) ) ) |
144 |
139 140 141 143
|
4syl |
|- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) <_ ( 2 ^ ( ( j + 1 ) + 1 ) ) ) |
145 |
136 137 138 144
|
lesub1dd |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) <_ ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) |
146 |
|
eluz2 |
|- ( ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ( ZZ>= ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <-> ( ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ZZ /\ ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ZZ /\ ( ( 2 ^ ( j + 1 ) ) - 1 ) <_ ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) |
147 |
129 135 145 146
|
syl3anbrc |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ( ZZ>= ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) |
148 |
|
elfzuzb |
|- ( ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <-> ( ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( ZZ>= ` 1 ) /\ ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ( ZZ>= ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) ) |
149 |
127 147 148
|
sylanbrc |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) |
150 |
|
fzsplit |
|- ( ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) -> ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) = ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + 1 ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) |
151 |
149 150
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) = ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + 1 ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) |
152 |
|
npcan |
|- ( ( ( 2 ^ ( j + 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + 1 ) = ( 2 ^ ( j + 1 ) ) ) |
153 |
107 16 152
|
sylancl |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + 1 ) = ( 2 ^ ( j + 1 ) ) ) |
154 |
153
|
oveq1d |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + 1 ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) = ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) |
155 |
154
|
uneq2d |
|- ( ( ph /\ j e. NN0 ) -> ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + 1 ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) |
156 |
151 155
|
eqtrd |
|- ( ( ph /\ j e. NN0 ) -> ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) = ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) |
157 |
156
|
fveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( # ` ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = ( # ` ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) ) |
158 |
|
expp1 |
|- ( ( 2 e. CC /\ ( j + 1 ) e. NN0 ) -> ( 2 ^ ( ( j + 1 ) + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) x. 2 ) ) |
159 |
9 73 158
|
sylancr |
|- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( ( j + 1 ) + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) x. 2 ) ) |
160 |
107
|
times2d |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) x. 2 ) = ( ( 2 ^ ( j + 1 ) ) + ( 2 ^ ( j + 1 ) ) ) ) |
161 |
159 160
|
eqtrd |
|- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( ( j + 1 ) + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) + ( 2 ^ ( j + 1 ) ) ) ) |
162 |
161
|
oveq1d |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) = ( ( ( 2 ^ ( j + 1 ) ) + ( 2 ^ ( j + 1 ) ) ) - 1 ) ) |
163 |
|
1cnd |
|- ( ( ph /\ j e. NN0 ) -> 1 e. CC ) |
164 |
107 107 163
|
addsubd |
|- ( ( ph /\ j e. NN0 ) -> ( ( ( 2 ^ ( j + 1 ) ) + ( 2 ^ ( j + 1 ) ) ) - 1 ) = ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + ( 2 ^ ( j + 1 ) ) ) ) |
165 |
162 164
|
eqtrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) = ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + ( 2 ^ ( j + 1 ) ) ) ) |
166 |
|
uztrn |
|- ( ( ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ( ZZ>= ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) /\ ( ( 2 ^ ( j + 1 ) ) - 1 ) e. ( ZZ>= ` 1 ) ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ( ZZ>= ` 1 ) ) |
167 |
147 127 166
|
syl2anc |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. ( ZZ>= ` 1 ) ) |
168 |
167 118
|
eleqtrrdi |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. NN ) |
169 |
168
|
nnnn0d |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. NN0 ) |
170 |
|
hashfz1 |
|- ( ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) e. NN0 -> ( # ` ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) |
171 |
169 170
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( # ` ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) |
172 |
126
|
nnnn0d |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) e. NN0 ) |
173 |
|
hashfz1 |
|- ( ( ( 2 ^ ( j + 1 ) ) - 1 ) e. NN0 -> ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) = ( ( 2 ^ ( j + 1 ) ) - 1 ) ) |
174 |
172 173
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) = ( ( 2 ^ ( j + 1 ) ) - 1 ) ) |
175 |
174
|
oveq1d |
|- ( ( ph /\ j e. NN0 ) -> ( ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) + ( 2 ^ ( j + 1 ) ) ) = ( ( ( 2 ^ ( j + 1 ) ) - 1 ) + ( 2 ^ ( j + 1 ) ) ) ) |
176 |
165 171 175
|
3eqtr4d |
|- ( ( ph /\ j e. NN0 ) -> ( # ` ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = ( ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) + ( 2 ^ ( j + 1 ) ) ) ) |
177 |
106
|
ltm1d |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) - 1 ) < ( 2 ^ ( j + 1 ) ) ) |
178 |
|
fzdisj |
|- ( ( ( 2 ^ ( j + 1 ) ) - 1 ) < ( 2 ^ ( j + 1 ) ) -> ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) i^i ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = (/) ) |
179 |
177 178
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) i^i ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = (/) ) |
180 |
|
hashun |
|- ( ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) e. Fin /\ ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) e. Fin /\ ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) i^i ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) = (/) ) -> ( # ` ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) = ( ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) + ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) ) |
181 |
102 69 179 180
|
syl3anc |
|- ( ( ph /\ j e. NN0 ) -> ( # ` ( ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) u. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) = ( ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) + ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) ) |
182 |
157 176 181
|
3eqtr3d |
|- ( ( ph /\ j e. NN0 ) -> ( ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) + ( 2 ^ ( j + 1 ) ) ) = ( ( # ` ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) + ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) ) |
183 |
105 107 110 182
|
addcanad |
|- ( ( ph /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) = ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) ) |
184 |
183
|
oveq1d |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) = ( ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
185 |
|
fveq2 |
|- ( n = ( j + 1 ) -> ( G ` n ) = ( G ` ( j + 1 ) ) ) |
186 |
|
oveq2 |
|- ( n = ( j + 1 ) -> ( 2 ^ n ) = ( 2 ^ ( j + 1 ) ) ) |
187 |
186
|
fveq2d |
|- ( n = ( j + 1 ) -> ( F ` ( 2 ^ n ) ) = ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
188 |
186 187
|
oveq12d |
|- ( n = ( j + 1 ) -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) = ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
189 |
185 188
|
eqeq12d |
|- ( n = ( j + 1 ) -> ( ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) <-> ( G ` ( j + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) ) |
190 |
63
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> A. n e. NN0 ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
191 |
189 190 73
|
rspcdva |
|- ( ( ph /\ j e. NN0 ) -> ( G ` ( j + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
192 |
83
|
recnd |
|- ( ( ph /\ j e. NN0 ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) e. CC ) |
193 |
|
fsumconst |
|- ( ( ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) e. Fin /\ ( F ` ( 2 ^ ( j + 1 ) ) ) e. CC ) -> sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) = ( ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
194 |
69 192 193
|
syl2anc |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) = ( ( # ` ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
195 |
184 191 194
|
3eqtr4d |
|- ( ( ph /\ j e. NN0 ) -> ( G ` ( j + 1 ) ) = sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
196 |
101 195
|
breqtrrd |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) <_ ( G ` ( j + 1 ) ) ) |
197 |
|
elfznn |
|- ( k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) -> k e. NN ) |
198 |
70 197 1
|
syl2an |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> ( F ` k ) e. RR ) |
199 |
102 198
|
fsumrecl |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) e. RR ) |
200 |
69 79
|
fsumrecl |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) e. RR ) |
201 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
202 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
203 |
|
simpr |
|- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
204 |
|
nnexpcl |
|- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
205 |
71 203 204
|
sylancr |
|- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
206 |
205
|
nnred |
|- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. RR ) |
207 |
|
fveq2 |
|- ( k = ( 2 ^ n ) -> ( F ` k ) = ( F ` ( 2 ^ n ) ) ) |
208 |
207
|
eleq1d |
|- ( k = ( 2 ^ n ) -> ( ( F ` k ) e. RR <-> ( F ` ( 2 ^ n ) ) e. RR ) ) |
209 |
43
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> A. k e. NN ( F ` k ) e. RR ) |
210 |
208 209 205
|
rspcdva |
|- ( ( ph /\ n e. NN0 ) -> ( F ` ( 2 ^ n ) ) e. RR ) |
211 |
206 210
|
remulcld |
|- ( ( ph /\ n e. NN0 ) -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) e. RR ) |
212 |
4 211
|
eqeltrd |
|- ( ( ph /\ n e. NN0 ) -> ( G ` n ) e. RR ) |
213 |
201 202 212
|
serfre |
|- ( ph -> seq 0 ( + , G ) : NN0 --> RR ) |
214 |
213
|
ffvelrnda |
|- ( ( ph /\ j e. NN0 ) -> ( seq 0 ( + , G ) ` j ) e. RR ) |
215 |
136 83
|
remulcld |
|- ( ( ph /\ j e. NN0 ) -> ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) e. RR ) |
216 |
191 215
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( G ` ( j + 1 ) ) e. RR ) |
217 |
|
le2add |
|- ( ( ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) e. RR /\ sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) e. RR ) /\ ( ( seq 0 ( + , G ) ` j ) e. RR /\ ( G ` ( j + 1 ) ) e. RR ) ) -> ( ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) <_ ( seq 0 ( + , G ) ` j ) /\ sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) <_ ( G ` ( j + 1 ) ) ) -> ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) + sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) ) <_ ( ( seq 0 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) ) |
218 |
199 200 214 216 217
|
syl22anc |
|- ( ( ph /\ j e. NN0 ) -> ( ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) <_ ( seq 0 ( + , G ) ` j ) /\ sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) <_ ( G ` ( j + 1 ) ) ) -> ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) + sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) ) <_ ( ( seq 0 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) ) |
219 |
196 218
|
mpan2d |
|- ( ( ph /\ j e. NN0 ) -> ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) <_ ( seq 0 ( + , G ) ` j ) -> ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) + sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) ) <_ ( ( seq 0 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) ) |
220 |
|
eqidd |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> ( F ` k ) = ( F ` k ) ) |
221 |
1
|
recnd |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. CC ) |
222 |
70 197 221
|
syl2an |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> ( F ` k ) e. CC ) |
223 |
220 127 222
|
fsumser |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) = ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) |
224 |
223
|
eqcomd |
|- ( ( ph /\ j e. NN0 ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) = sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) ) |
225 |
224
|
breq1d |
|- ( ( ph /\ j e. NN0 ) -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) <-> sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) <_ ( seq 0 ( + , G ) ` j ) ) ) |
226 |
|
eqidd |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) -> ( F ` k ) = ( F ` k ) ) |
227 |
|
elfznn |
|- ( k e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) -> k e. NN ) |
228 |
70 227 221
|
syl2an |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) -> ( F ` k ) e. CC ) |
229 |
226 167 228
|
fsumser |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) = ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ) |
230 |
|
fzfid |
|- ( ( ph /\ j e. NN0 ) -> ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) e. Fin ) |
231 |
179 156 230 228
|
fsumsplit |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 1 ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) = ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) + sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) ) ) |
232 |
229 231
|
eqtr3d |
|- ( ( ph /\ j e. NN0 ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) = ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) + sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) ) ) |
233 |
|
simpr |
|- ( ( ph /\ j e. NN0 ) -> j e. NN0 ) |
234 |
233 201
|
eleqtrdi |
|- ( ( ph /\ j e. NN0 ) -> j e. ( ZZ>= ` 0 ) ) |
235 |
|
seqp1 |
|- ( j e. ( ZZ>= ` 0 ) -> ( seq 0 ( + , G ) ` ( j + 1 ) ) = ( ( seq 0 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) |
236 |
234 235
|
syl |
|- ( ( ph /\ j e. NN0 ) -> ( seq 0 ( + , G ) ` ( j + 1 ) ) = ( ( seq 0 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) |
237 |
232 236
|
breq12d |
|- ( ( ph /\ j e. NN0 ) -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` ( j + 1 ) ) <-> ( sum_ k e. ( 1 ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ( F ` k ) + sum_ k e. ( ( 2 ^ ( j + 1 ) ) ... ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) ( F ` k ) ) <_ ( ( seq 0 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) ) |
238 |
219 225 237
|
3imtr4d |
|- ( ( ph /\ j e. NN0 ) -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` ( j + 1 ) ) ) ) |
239 |
238
|
expcom |
|- ( j e. NN0 -> ( ph -> ( ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` ( j + 1 ) ) ) ) ) |
240 |
239
|
a2d |
|- ( j e. NN0 -> ( ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( j + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` j ) ) -> ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( ( j + 1 ) + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` ( j + 1 ) ) ) ) ) |
241 |
22 28 34 40 68 240
|
nn0ind |
|- ( N e. NN0 -> ( ph -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( N + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` N ) ) ) |
242 |
241
|
impcom |
|- ( ( ph /\ N e. NN0 ) -> ( seq 1 ( + , F ) ` ( ( 2 ^ ( N + 1 ) ) - 1 ) ) <_ ( seq 0 ( + , G ) ` N ) ) |