Step |
Hyp |
Ref |
Expression |
1 |
|
climcnds.1 |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. RR ) |
2 |
|
climcnds.2 |
|- ( ( ph /\ k e. NN ) -> 0 <_ ( F ` k ) ) |
3 |
|
climcnds.3 |
|- ( ( ph /\ k e. NN ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
4 |
|
climcnds.4 |
|- ( ( ph /\ n e. NN0 ) -> ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
5 |
|
fveq2 |
|- ( x = 1 -> ( seq 1 ( + , G ) ` x ) = ( seq 1 ( + , G ) ` 1 ) ) |
6 |
|
oveq2 |
|- ( x = 1 -> ( 2 ^ x ) = ( 2 ^ 1 ) ) |
7 |
|
2cn |
|- 2 e. CC |
8 |
|
exp1 |
|- ( 2 e. CC -> ( 2 ^ 1 ) = 2 ) |
9 |
7 8
|
ax-mp |
|- ( 2 ^ 1 ) = 2 |
10 |
6 9
|
eqtrdi |
|- ( x = 1 -> ( 2 ^ x ) = 2 ) |
11 |
10
|
fveq2d |
|- ( x = 1 -> ( seq 1 ( + , F ) ` ( 2 ^ x ) ) = ( seq 1 ( + , F ) ` 2 ) ) |
12 |
11
|
oveq2d |
|- ( x = 1 -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) = ( 2 x. ( seq 1 ( + , F ) ` 2 ) ) ) |
13 |
5 12
|
breq12d |
|- ( x = 1 -> ( ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) <-> ( seq 1 ( + , G ) ` 1 ) <_ ( 2 x. ( seq 1 ( + , F ) ` 2 ) ) ) ) |
14 |
13
|
imbi2d |
|- ( x = 1 -> ( ( ph -> ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) ) <-> ( ph -> ( seq 1 ( + , G ) ` 1 ) <_ ( 2 x. ( seq 1 ( + , F ) ` 2 ) ) ) ) ) |
15 |
|
fveq2 |
|- ( x = j -> ( seq 1 ( + , G ) ` x ) = ( seq 1 ( + , G ) ` j ) ) |
16 |
|
oveq2 |
|- ( x = j -> ( 2 ^ x ) = ( 2 ^ j ) ) |
17 |
16
|
fveq2d |
|- ( x = j -> ( seq 1 ( + , F ) ` ( 2 ^ x ) ) = ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) |
18 |
17
|
oveq2d |
|- ( x = j -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) = ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) ) |
19 |
15 18
|
breq12d |
|- ( x = j -> ( ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) <-> ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) ) ) |
20 |
19
|
imbi2d |
|- ( x = j -> ( ( ph -> ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) ) <-> ( ph -> ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) ) ) ) |
21 |
|
fveq2 |
|- ( x = ( j + 1 ) -> ( seq 1 ( + , G ) ` x ) = ( seq 1 ( + , G ) ` ( j + 1 ) ) ) |
22 |
|
oveq2 |
|- ( x = ( j + 1 ) -> ( 2 ^ x ) = ( 2 ^ ( j + 1 ) ) ) |
23 |
22
|
fveq2d |
|- ( x = ( j + 1 ) -> ( seq 1 ( + , F ) ` ( 2 ^ x ) ) = ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) |
24 |
23
|
oveq2d |
|- ( x = ( j + 1 ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) = ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) ) |
25 |
21 24
|
breq12d |
|- ( x = ( j + 1 ) -> ( ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) <-> ( seq 1 ( + , G ) ` ( j + 1 ) ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) ) ) |
26 |
25
|
imbi2d |
|- ( x = ( j + 1 ) -> ( ( ph -> ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) ) <-> ( ph -> ( seq 1 ( + , G ) ` ( j + 1 ) ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) ) ) ) |
27 |
|
fveq2 |
|- ( x = N -> ( seq 1 ( + , G ) ` x ) = ( seq 1 ( + , G ) ` N ) ) |
28 |
|
oveq2 |
|- ( x = N -> ( 2 ^ x ) = ( 2 ^ N ) ) |
29 |
28
|
fveq2d |
|- ( x = N -> ( seq 1 ( + , F ) ` ( 2 ^ x ) ) = ( seq 1 ( + , F ) ` ( 2 ^ N ) ) ) |
30 |
29
|
oveq2d |
|- ( x = N -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) = ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ N ) ) ) ) |
31 |
27 30
|
breq12d |
|- ( x = N -> ( ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) <-> ( seq 1 ( + , G ) ` N ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ N ) ) ) ) ) |
32 |
31
|
imbi2d |
|- ( x = N -> ( ( ph -> ( seq 1 ( + , G ) ` x ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ x ) ) ) ) <-> ( ph -> ( seq 1 ( + , G ) ` N ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ N ) ) ) ) ) ) |
33 |
|
fveq2 |
|- ( k = 1 -> ( F ` k ) = ( F ` 1 ) ) |
34 |
33
|
breq2d |
|- ( k = 1 -> ( 0 <_ ( F ` k ) <-> 0 <_ ( F ` 1 ) ) ) |
35 |
2
|
ralrimiva |
|- ( ph -> A. k e. NN 0 <_ ( F ` k ) ) |
36 |
|
1nn |
|- 1 e. NN |
37 |
36
|
a1i |
|- ( ph -> 1 e. NN ) |
38 |
34 35 37
|
rspcdva |
|- ( ph -> 0 <_ ( F ` 1 ) ) |
39 |
|
fveq2 |
|- ( k = 2 -> ( F ` k ) = ( F ` 2 ) ) |
40 |
39
|
eleq1d |
|- ( k = 2 -> ( ( F ` k ) e. RR <-> ( F ` 2 ) e. RR ) ) |
41 |
1
|
ralrimiva |
|- ( ph -> A. k e. NN ( F ` k ) e. RR ) |
42 |
|
2nn |
|- 2 e. NN |
43 |
42
|
a1i |
|- ( ph -> 2 e. NN ) |
44 |
40 41 43
|
rspcdva |
|- ( ph -> ( F ` 2 ) e. RR ) |
45 |
33
|
eleq1d |
|- ( k = 1 -> ( ( F ` k ) e. RR <-> ( F ` 1 ) e. RR ) ) |
46 |
45 41 37
|
rspcdva |
|- ( ph -> ( F ` 1 ) e. RR ) |
47 |
44 46
|
addge02d |
|- ( ph -> ( 0 <_ ( F ` 1 ) <-> ( F ` 2 ) <_ ( ( F ` 1 ) + ( F ` 2 ) ) ) ) |
48 |
38 47
|
mpbid |
|- ( ph -> ( F ` 2 ) <_ ( ( F ` 1 ) + ( F ` 2 ) ) ) |
49 |
46 44
|
readdcld |
|- ( ph -> ( ( F ` 1 ) + ( F ` 2 ) ) e. RR ) |
50 |
43
|
nnrpd |
|- ( ph -> 2 e. RR+ ) |
51 |
44 49 50
|
lemul2d |
|- ( ph -> ( ( F ` 2 ) <_ ( ( F ` 1 ) + ( F ` 2 ) ) <-> ( 2 x. ( F ` 2 ) ) <_ ( 2 x. ( ( F ` 1 ) + ( F ` 2 ) ) ) ) ) |
52 |
48 51
|
mpbid |
|- ( ph -> ( 2 x. ( F ` 2 ) ) <_ ( 2 x. ( ( F ` 1 ) + ( F ` 2 ) ) ) ) |
53 |
|
1z |
|- 1 e. ZZ |
54 |
|
fveq2 |
|- ( n = 1 -> ( G ` n ) = ( G ` 1 ) ) |
55 |
|
oveq2 |
|- ( n = 1 -> ( 2 ^ n ) = ( 2 ^ 1 ) ) |
56 |
55 9
|
eqtrdi |
|- ( n = 1 -> ( 2 ^ n ) = 2 ) |
57 |
56
|
fveq2d |
|- ( n = 1 -> ( F ` ( 2 ^ n ) ) = ( F ` 2 ) ) |
58 |
56 57
|
oveq12d |
|- ( n = 1 -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) = ( 2 x. ( F ` 2 ) ) ) |
59 |
54 58
|
eqeq12d |
|- ( n = 1 -> ( ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) <-> ( G ` 1 ) = ( 2 x. ( F ` 2 ) ) ) ) |
60 |
4
|
ralrimiva |
|- ( ph -> A. n e. NN0 ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
61 |
|
1nn0 |
|- 1 e. NN0 |
62 |
61
|
a1i |
|- ( ph -> 1 e. NN0 ) |
63 |
59 60 62
|
rspcdva |
|- ( ph -> ( G ` 1 ) = ( 2 x. ( F ` 2 ) ) ) |
64 |
53 63
|
seq1i |
|- ( ph -> ( seq 1 ( + , G ) ` 1 ) = ( 2 x. ( F ` 2 ) ) ) |
65 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
66 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
67 |
|
eqidd |
|- ( ph -> ( F ` 1 ) = ( F ` 1 ) ) |
68 |
53 67
|
seq1i |
|- ( ph -> ( seq 1 ( + , F ) ` 1 ) = ( F ` 1 ) ) |
69 |
|
eqidd |
|- ( ph -> ( F ` 2 ) = ( F ` 2 ) ) |
70 |
65 37 66 68 69
|
seqp1d |
|- ( ph -> ( seq 1 ( + , F ) ` 2 ) = ( ( F ` 1 ) + ( F ` 2 ) ) ) |
71 |
70
|
oveq2d |
|- ( ph -> ( 2 x. ( seq 1 ( + , F ) ` 2 ) ) = ( 2 x. ( ( F ` 1 ) + ( F ` 2 ) ) ) ) |
72 |
52 64 71
|
3brtr4d |
|- ( ph -> ( seq 1 ( + , G ) ` 1 ) <_ ( 2 x. ( seq 1 ( + , F ) ` 2 ) ) ) |
73 |
|
fveq2 |
|- ( n = ( j + 1 ) -> ( G ` n ) = ( G ` ( j + 1 ) ) ) |
74 |
|
oveq2 |
|- ( n = ( j + 1 ) -> ( 2 ^ n ) = ( 2 ^ ( j + 1 ) ) ) |
75 |
74
|
fveq2d |
|- ( n = ( j + 1 ) -> ( F ` ( 2 ^ n ) ) = ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
76 |
74 75
|
oveq12d |
|- ( n = ( j + 1 ) -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) = ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
77 |
73 76
|
eqeq12d |
|- ( n = ( j + 1 ) -> ( ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) <-> ( G ` ( j + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) ) |
78 |
60
|
adantr |
|- ( ( ph /\ j e. NN ) -> A. n e. NN0 ( G ` n ) = ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) ) |
79 |
|
peano2nn |
|- ( j e. NN -> ( j + 1 ) e. NN ) |
80 |
79
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( j + 1 ) e. NN ) |
81 |
80
|
nnnn0d |
|- ( ( ph /\ j e. NN ) -> ( j + 1 ) e. NN0 ) |
82 |
77 78 81
|
rspcdva |
|- ( ( ph /\ j e. NN ) -> ( G ` ( j + 1 ) ) = ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
83 |
|
nnnn0 |
|- ( j e. NN -> j e. NN0 ) |
84 |
83
|
adantl |
|- ( ( ph /\ j e. NN ) -> j e. NN0 ) |
85 |
|
expp1 |
|- ( ( 2 e. CC /\ j e. NN0 ) -> ( 2 ^ ( j + 1 ) ) = ( ( 2 ^ j ) x. 2 ) ) |
86 |
7 84 85
|
sylancr |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) = ( ( 2 ^ j ) x. 2 ) ) |
87 |
|
nnexpcl |
|- ( ( 2 e. NN /\ j e. NN0 ) -> ( 2 ^ j ) e. NN ) |
88 |
42 83 87
|
sylancr |
|- ( j e. NN -> ( 2 ^ j ) e. NN ) |
89 |
88
|
adantl |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) e. NN ) |
90 |
89
|
nncnd |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) e. CC ) |
91 |
|
mulcom |
|- ( ( ( 2 ^ j ) e. CC /\ 2 e. CC ) -> ( ( 2 ^ j ) x. 2 ) = ( 2 x. ( 2 ^ j ) ) ) |
92 |
90 7 91
|
sylancl |
|- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) x. 2 ) = ( 2 x. ( 2 ^ j ) ) ) |
93 |
86 92
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) = ( 2 x. ( 2 ^ j ) ) ) |
94 |
93
|
oveq1d |
|- ( ( ph /\ j e. NN ) -> ( ( 2 ^ ( j + 1 ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) = ( ( 2 x. ( 2 ^ j ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
95 |
7
|
a1i |
|- ( ( ph /\ j e. NN ) -> 2 e. CC ) |
96 |
|
fveq2 |
|- ( k = ( 2 ^ ( j + 1 ) ) -> ( F ` k ) = ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
97 |
96
|
eleq1d |
|- ( k = ( 2 ^ ( j + 1 ) ) -> ( ( F ` k ) e. RR <-> ( F ` ( 2 ^ ( j + 1 ) ) ) e. RR ) ) |
98 |
41
|
adantr |
|- ( ( ph /\ j e. NN ) -> A. k e. NN ( F ` k ) e. RR ) |
99 |
|
nnexpcl |
|- ( ( 2 e. NN /\ ( j + 1 ) e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
100 |
42 81 99
|
sylancr |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. NN ) |
101 |
97 98 100
|
rspcdva |
|- ( ( ph /\ j e. NN ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) e. RR ) |
102 |
101
|
recnd |
|- ( ( ph /\ j e. NN ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) e. CC ) |
103 |
95 90 102
|
mulassd |
|- ( ( ph /\ j e. NN ) -> ( ( 2 x. ( 2 ^ j ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) = ( 2 x. ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) ) |
104 |
82 94 103
|
3eqtrd |
|- ( ( ph /\ j e. NN ) -> ( G ` ( j + 1 ) ) = ( 2 x. ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) ) |
105 |
89
|
nnnn0d |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) e. NN0 ) |
106 |
|
hashfz1 |
|- ( ( 2 ^ j ) e. NN0 -> ( # ` ( 1 ... ( 2 ^ j ) ) ) = ( 2 ^ j ) ) |
107 |
105 106
|
syl |
|- ( ( ph /\ j e. NN ) -> ( # ` ( 1 ... ( 2 ^ j ) ) ) = ( 2 ^ j ) ) |
108 |
107 90
|
eqeltrd |
|- ( ( ph /\ j e. NN ) -> ( # ` ( 1 ... ( 2 ^ j ) ) ) e. CC ) |
109 |
|
fzfid |
|- ( ( ph /\ j e. NN ) -> ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) e. Fin ) |
110 |
|
hashcl |
|- ( ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) e. Fin -> ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) e. NN0 ) |
111 |
109 110
|
syl |
|- ( ( ph /\ j e. NN ) -> ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) e. NN0 ) |
112 |
111
|
nn0cnd |
|- ( ( ph /\ j e. NN ) -> ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) e. CC ) |
113 |
|
simpr |
|- ( ( ph /\ j e. NN ) -> j e. NN ) |
114 |
113
|
nnzd |
|- ( ( ph /\ j e. NN ) -> j e. ZZ ) |
115 |
|
uzid |
|- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
116 |
|
peano2uz |
|- ( j e. ( ZZ>= ` j ) -> ( j + 1 ) e. ( ZZ>= ` j ) ) |
117 |
|
2re |
|- 2 e. RR |
118 |
|
1le2 |
|- 1 <_ 2 |
119 |
|
leexp2a |
|- ( ( 2 e. RR /\ 1 <_ 2 /\ ( j + 1 ) e. ( ZZ>= ` j ) ) -> ( 2 ^ j ) <_ ( 2 ^ ( j + 1 ) ) ) |
120 |
117 118 119
|
mp3an12 |
|- ( ( j + 1 ) e. ( ZZ>= ` j ) -> ( 2 ^ j ) <_ ( 2 ^ ( j + 1 ) ) ) |
121 |
114 115 116 120
|
4syl |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) <_ ( 2 ^ ( j + 1 ) ) ) |
122 |
89 65
|
eleqtrdi |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) e. ( ZZ>= ` 1 ) ) |
123 |
100
|
nnzd |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. ZZ ) |
124 |
|
elfz5 |
|- ( ( ( 2 ^ j ) e. ( ZZ>= ` 1 ) /\ ( 2 ^ ( j + 1 ) ) e. ZZ ) -> ( ( 2 ^ j ) e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) <-> ( 2 ^ j ) <_ ( 2 ^ ( j + 1 ) ) ) ) |
125 |
122 123 124
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) <-> ( 2 ^ j ) <_ ( 2 ^ ( j + 1 ) ) ) ) |
126 |
121 125
|
mpbird |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) |
127 |
|
fzsplit |
|- ( ( 2 ^ j ) e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) -> ( 1 ... ( 2 ^ ( j + 1 ) ) ) = ( ( 1 ... ( 2 ^ j ) ) u. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) |
128 |
126 127
|
syl |
|- ( ( ph /\ j e. NN ) -> ( 1 ... ( 2 ^ ( j + 1 ) ) ) = ( ( 1 ... ( 2 ^ j ) ) u. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) |
129 |
128
|
fveq2d |
|- ( ( ph /\ j e. NN ) -> ( # ` ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) = ( # ` ( ( 1 ... ( 2 ^ j ) ) u. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) ) |
130 |
90
|
times2d |
|- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) x. 2 ) = ( ( 2 ^ j ) + ( 2 ^ j ) ) ) |
131 |
86 130
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) = ( ( 2 ^ j ) + ( 2 ^ j ) ) ) |
132 |
100
|
nnnn0d |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. NN0 ) |
133 |
|
hashfz1 |
|- ( ( 2 ^ ( j + 1 ) ) e. NN0 -> ( # ` ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) = ( 2 ^ ( j + 1 ) ) ) |
134 |
132 133
|
syl |
|- ( ( ph /\ j e. NN ) -> ( # ` ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) = ( 2 ^ ( j + 1 ) ) ) |
135 |
107
|
oveq1d |
|- ( ( ph /\ j e. NN ) -> ( ( # ` ( 1 ... ( 2 ^ j ) ) ) + ( 2 ^ j ) ) = ( ( 2 ^ j ) + ( 2 ^ j ) ) ) |
136 |
131 134 135
|
3eqtr4d |
|- ( ( ph /\ j e. NN ) -> ( # ` ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) = ( ( # ` ( 1 ... ( 2 ^ j ) ) ) + ( 2 ^ j ) ) ) |
137 |
|
fzfid |
|- ( ( ph /\ j e. NN ) -> ( 1 ... ( 2 ^ j ) ) e. Fin ) |
138 |
89
|
nnred |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) e. RR ) |
139 |
138
|
ltp1d |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) < ( ( 2 ^ j ) + 1 ) ) |
140 |
|
fzdisj |
|- ( ( 2 ^ j ) < ( ( 2 ^ j ) + 1 ) -> ( ( 1 ... ( 2 ^ j ) ) i^i ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) = (/) ) |
141 |
139 140
|
syl |
|- ( ( ph /\ j e. NN ) -> ( ( 1 ... ( 2 ^ j ) ) i^i ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) = (/) ) |
142 |
|
hashun |
|- ( ( ( 1 ... ( 2 ^ j ) ) e. Fin /\ ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) e. Fin /\ ( ( 1 ... ( 2 ^ j ) ) i^i ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) = (/) ) -> ( # ` ( ( 1 ... ( 2 ^ j ) ) u. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) = ( ( # ` ( 1 ... ( 2 ^ j ) ) ) + ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) ) |
143 |
137 109 141 142
|
syl3anc |
|- ( ( ph /\ j e. NN ) -> ( # ` ( ( 1 ... ( 2 ^ j ) ) u. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) = ( ( # ` ( 1 ... ( 2 ^ j ) ) ) + ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) ) |
144 |
129 136 143
|
3eqtr3d |
|- ( ( ph /\ j e. NN ) -> ( ( # ` ( 1 ... ( 2 ^ j ) ) ) + ( 2 ^ j ) ) = ( ( # ` ( 1 ... ( 2 ^ j ) ) ) + ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) ) |
145 |
108 90 112 144
|
addcanad |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ j ) = ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) ) |
146 |
145
|
oveq1d |
|- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) = ( ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
147 |
|
fsumconst |
|- ( ( ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) e. Fin /\ ( F ` ( 2 ^ ( j + 1 ) ) ) e. CC ) -> sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) = ( ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
148 |
109 102 147
|
syl2anc |
|- ( ( ph /\ j e. NN ) -> sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) = ( ( # ` ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) |
149 |
146 148
|
eqtr4d |
|- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) = sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) ) |
150 |
101
|
adantr |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) e. RR ) |
151 |
|
simpl |
|- ( ( ph /\ j e. NN ) -> ph ) |
152 |
|
peano2nn |
|- ( ( 2 ^ j ) e. NN -> ( ( 2 ^ j ) + 1 ) e. NN ) |
153 |
89 152
|
syl |
|- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) + 1 ) e. NN ) |
154 |
|
elfzuz |
|- ( k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) -> k e. ( ZZ>= ` ( ( 2 ^ j ) + 1 ) ) ) |
155 |
|
eluznn |
|- ( ( ( ( 2 ^ j ) + 1 ) e. NN /\ k e. ( ZZ>= ` ( ( 2 ^ j ) + 1 ) ) ) -> k e. NN ) |
156 |
153 154 155
|
syl2an |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> k e. NN ) |
157 |
151 156 1
|
syl2an2r |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` k ) e. RR ) |
158 |
|
elfzuz3 |
|- ( n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) -> ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` n ) ) |
159 |
158
|
adantl |
|- ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` n ) ) |
160 |
|
simplll |
|- ( ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( n ... ( 2 ^ ( j + 1 ) ) ) ) -> ph ) |
161 |
|
elfzuz |
|- ( n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) -> n e. ( ZZ>= ` ( ( 2 ^ j ) + 1 ) ) ) |
162 |
|
eluznn |
|- ( ( ( ( 2 ^ j ) + 1 ) e. NN /\ n e. ( ZZ>= ` ( ( 2 ^ j ) + 1 ) ) ) -> n e. NN ) |
163 |
153 161 162
|
syl2an |
|- ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> n e. NN ) |
164 |
|
elfzuz |
|- ( k e. ( n ... ( 2 ^ ( j + 1 ) ) ) -> k e. ( ZZ>= ` n ) ) |
165 |
|
eluznn |
|- ( ( n e. NN /\ k e. ( ZZ>= ` n ) ) -> k e. NN ) |
166 |
163 164 165
|
syl2an |
|- ( ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( n ... ( 2 ^ ( j + 1 ) ) ) ) -> k e. NN ) |
167 |
160 166 1
|
syl2anc |
|- ( ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( n ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` k ) e. RR ) |
168 |
|
simplll |
|- ( ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( n ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> ph ) |
169 |
|
elfzuz |
|- ( k e. ( n ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) -> k e. ( ZZ>= ` n ) ) |
170 |
163 169 165
|
syl2an |
|- ( ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( n ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> k e. NN ) |
171 |
168 170 3
|
syl2anc |
|- ( ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) /\ k e. ( n ... ( ( 2 ^ ( j + 1 ) ) - 1 ) ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
172 |
159 167 171
|
monoord2 |
|- ( ( ( ph /\ j e. NN ) /\ n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` n ) ) |
173 |
172
|
ralrimiva |
|- ( ( ph /\ j e. NN ) -> A. n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` n ) ) |
174 |
|
fveq2 |
|- ( n = k -> ( F ` n ) = ( F ` k ) ) |
175 |
174
|
breq2d |
|- ( n = k -> ( ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` n ) <-> ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` k ) ) ) |
176 |
175
|
rspccva |
|- ( ( A. n e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` n ) /\ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` k ) ) |
177 |
173 176
|
sylan |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` ( 2 ^ ( j + 1 ) ) ) <_ ( F ` k ) ) |
178 |
109 150 157 177
|
fsumle |
|- ( ( ph /\ j e. NN ) -> sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` ( 2 ^ ( j + 1 ) ) ) <_ sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) |
179 |
149 178
|
eqbrtrd |
|- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) <_ sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) |
180 |
138 101
|
remulcld |
|- ( ( ph /\ j e. NN ) -> ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) e. RR ) |
181 |
109 157
|
fsumrecl |
|- ( ( ph /\ j e. NN ) -> sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) e. RR ) |
182 |
|
2rp |
|- 2 e. RR+ |
183 |
182
|
a1i |
|- ( ( ph /\ j e. NN ) -> 2 e. RR+ ) |
184 |
180 181 183
|
lemul2d |
|- ( ( ph /\ j e. NN ) -> ( ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) <_ sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) <-> ( 2 x. ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) <_ ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) |
185 |
179 184
|
mpbid |
|- ( ( ph /\ j e. NN ) -> ( 2 x. ( ( 2 ^ j ) x. ( F ` ( 2 ^ ( j + 1 ) ) ) ) ) <_ ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) |
186 |
104 185
|
eqbrtrd |
|- ( ( ph /\ j e. NN ) -> ( G ` ( j + 1 ) ) <_ ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) |
187 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
188 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
189 |
|
simpr |
|- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
190 |
|
nnexpcl |
|- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
191 |
42 189 190
|
sylancr |
|- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
192 |
191
|
nnred |
|- ( ( ph /\ n e. NN0 ) -> ( 2 ^ n ) e. RR ) |
193 |
|
fveq2 |
|- ( k = ( 2 ^ n ) -> ( F ` k ) = ( F ` ( 2 ^ n ) ) ) |
194 |
193
|
eleq1d |
|- ( k = ( 2 ^ n ) -> ( ( F ` k ) e. RR <-> ( F ` ( 2 ^ n ) ) e. RR ) ) |
195 |
41
|
adantr |
|- ( ( ph /\ n e. NN0 ) -> A. k e. NN ( F ` k ) e. RR ) |
196 |
194 195 191
|
rspcdva |
|- ( ( ph /\ n e. NN0 ) -> ( F ` ( 2 ^ n ) ) e. RR ) |
197 |
192 196
|
remulcld |
|- ( ( ph /\ n e. NN0 ) -> ( ( 2 ^ n ) x. ( F ` ( 2 ^ n ) ) ) e. RR ) |
198 |
4 197
|
eqeltrd |
|- ( ( ph /\ n e. NN0 ) -> ( G ` n ) e. RR ) |
199 |
188 198
|
sylan2 |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. RR ) |
200 |
65 187 199
|
serfre |
|- ( ph -> seq 1 ( + , G ) : NN --> RR ) |
201 |
200
|
ffvelrnda |
|- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , G ) ` j ) e. RR ) |
202 |
73
|
eleq1d |
|- ( n = ( j + 1 ) -> ( ( G ` n ) e. RR <-> ( G ` ( j + 1 ) ) e. RR ) ) |
203 |
199
|
ralrimiva |
|- ( ph -> A. n e. NN ( G ` n ) e. RR ) |
204 |
203
|
adantr |
|- ( ( ph /\ j e. NN ) -> A. n e. NN ( G ` n ) e. RR ) |
205 |
202 204 80
|
rspcdva |
|- ( ( ph /\ j e. NN ) -> ( G ` ( j + 1 ) ) e. RR ) |
206 |
65 187 1
|
serfre |
|- ( ph -> seq 1 ( + , F ) : NN --> RR ) |
207 |
|
ffvelrn |
|- ( ( seq 1 ( + , F ) : NN --> RR /\ ( 2 ^ j ) e. NN ) -> ( seq 1 ( + , F ) ` ( 2 ^ j ) ) e. RR ) |
208 |
206 88 207
|
syl2an |
|- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( 2 ^ j ) ) e. RR ) |
209 |
|
remulcl |
|- ( ( 2 e. RR /\ ( seq 1 ( + , F ) ` ( 2 ^ j ) ) e. RR ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) e. RR ) |
210 |
117 208 209
|
sylancr |
|- ( ( ph /\ j e. NN ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) e. RR ) |
211 |
|
remulcl |
|- ( ( 2 e. RR /\ sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) e. RR ) -> ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) e. RR ) |
212 |
117 181 211
|
sylancr |
|- ( ( ph /\ j e. NN ) -> ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) e. RR ) |
213 |
|
le2add |
|- ( ( ( ( seq 1 ( + , G ) ` j ) e. RR /\ ( G ` ( j + 1 ) ) e. RR ) /\ ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) e. RR /\ ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) e. RR ) ) -> ( ( ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) /\ ( G ` ( j + 1 ) ) <_ ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) -> ( ( seq 1 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) <_ ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) + ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) ) |
214 |
201 205 210 212 213
|
syl22anc |
|- ( ( ph /\ j e. NN ) -> ( ( ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) /\ ( G ` ( j + 1 ) ) <_ ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) -> ( ( seq 1 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) <_ ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) + ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) ) |
215 |
186 214
|
mpan2d |
|- ( ( ph /\ j e. NN ) -> ( ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) -> ( ( seq 1 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) <_ ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) + ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) ) |
216 |
113 65
|
eleqtrdi |
|- ( ( ph /\ j e. NN ) -> j e. ( ZZ>= ` 1 ) ) |
217 |
|
seqp1 |
|- ( j e. ( ZZ>= ` 1 ) -> ( seq 1 ( + , G ) ` ( j + 1 ) ) = ( ( seq 1 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) |
218 |
216 217
|
syl |
|- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , G ) ` ( j + 1 ) ) = ( ( seq 1 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) ) |
219 |
|
fzfid |
|- ( ( ph /\ j e. NN ) -> ( 1 ... ( 2 ^ ( j + 1 ) ) ) e. Fin ) |
220 |
|
elfznn |
|- ( k e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) -> k e. NN ) |
221 |
1
|
recnd |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. CC ) |
222 |
151 220 221
|
syl2an |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` k ) e. CC ) |
223 |
141 128 219 222
|
fsumsplit |
|- ( ( ph /\ j e. NN ) -> sum_ k e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) = ( sum_ k e. ( 1 ... ( 2 ^ j ) ) ( F ` k ) + sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) |
224 |
|
eqidd |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) ) -> ( F ` k ) = ( F ` k ) ) |
225 |
100 65
|
eleqtrdi |
|- ( ( ph /\ j e. NN ) -> ( 2 ^ ( j + 1 ) ) e. ( ZZ>= ` 1 ) ) |
226 |
224 225 222
|
fsumser |
|- ( ( ph /\ j e. NN ) -> sum_ k e. ( 1 ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) = ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) |
227 |
|
eqidd |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... ( 2 ^ j ) ) ) -> ( F ` k ) = ( F ` k ) ) |
228 |
|
elfznn |
|- ( k e. ( 1 ... ( 2 ^ j ) ) -> k e. NN ) |
229 |
151 228 221
|
syl2an |
|- ( ( ( ph /\ j e. NN ) /\ k e. ( 1 ... ( 2 ^ j ) ) ) -> ( F ` k ) e. CC ) |
230 |
227 122 229
|
fsumser |
|- ( ( ph /\ j e. NN ) -> sum_ k e. ( 1 ... ( 2 ^ j ) ) ( F ` k ) = ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) |
231 |
230
|
oveq1d |
|- ( ( ph /\ j e. NN ) -> ( sum_ k e. ( 1 ... ( 2 ^ j ) ) ( F ` k ) + sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) = ( ( seq 1 ( + , F ) ` ( 2 ^ j ) ) + sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) |
232 |
223 226 231
|
3eqtr3d |
|- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) = ( ( seq 1 ( + , F ) ` ( 2 ^ j ) ) + sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) |
233 |
232
|
oveq2d |
|- ( ( ph /\ j e. NN ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) = ( 2 x. ( ( seq 1 ( + , F ) ` ( 2 ^ j ) ) + sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) |
234 |
208
|
recnd |
|- ( ( ph /\ j e. NN ) -> ( seq 1 ( + , F ) ` ( 2 ^ j ) ) e. CC ) |
235 |
181
|
recnd |
|- ( ( ph /\ j e. NN ) -> sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) e. CC ) |
236 |
95 234 235
|
adddid |
|- ( ( ph /\ j e. NN ) -> ( 2 x. ( ( seq 1 ( + , F ) ` ( 2 ^ j ) ) + sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) = ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) + ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) |
237 |
233 236
|
eqtrd |
|- ( ( ph /\ j e. NN ) -> ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) = ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) + ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) |
238 |
218 237
|
breq12d |
|- ( ( ph /\ j e. NN ) -> ( ( seq 1 ( + , G ) ` ( j + 1 ) ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) <-> ( ( seq 1 ( + , G ) ` j ) + ( G ` ( j + 1 ) ) ) <_ ( ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) + ( 2 x. sum_ k e. ( ( ( 2 ^ j ) + 1 ) ... ( 2 ^ ( j + 1 ) ) ) ( F ` k ) ) ) ) ) |
239 |
215 238
|
sylibrd |
|- ( ( ph /\ j e. NN ) -> ( ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) -> ( seq 1 ( + , G ) ` ( j + 1 ) ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) ) ) |
240 |
239
|
expcom |
|- ( j e. NN -> ( ph -> ( ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) -> ( seq 1 ( + , G ) ` ( j + 1 ) ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) ) ) ) |
241 |
240
|
a2d |
|- ( j e. NN -> ( ( ph -> ( seq 1 ( + , G ) ` j ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ j ) ) ) ) -> ( ph -> ( seq 1 ( + , G ) ` ( j + 1 ) ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ ( j + 1 ) ) ) ) ) ) ) |
242 |
14 20 26 32 72 241
|
nnind |
|- ( N e. NN -> ( ph -> ( seq 1 ( + , G ) ` N ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ N ) ) ) ) ) |
243 |
242
|
impcom |
|- ( ( ph /\ N e. NN ) -> ( seq 1 ( + , G ) ` N ) <_ ( 2 x. ( seq 1 ( + , F ) ` ( 2 ^ N ) ) ) ) |