Step |
Hyp |
Ref |
Expression |
1 |
|
climconst.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climconst.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
climconst.3 |
|- ( ph -> F e. V ) |
4 |
|
climconst.4 |
|- ( ph -> A e. CC ) |
5 |
|
climconst.5 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
6 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
7 |
2 6
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
8 |
7 1
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
9 |
4
|
subidd |
|- ( ph -> ( A - A ) = 0 ) |
10 |
9
|
fveq2d |
|- ( ph -> ( abs ` ( A - A ) ) = ( abs ` 0 ) ) |
11 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
12 |
10 11
|
eqtrdi |
|- ( ph -> ( abs ` ( A - A ) ) = 0 ) |
13 |
12
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` ( A - A ) ) = 0 ) |
14 |
|
rpgt0 |
|- ( x e. RR+ -> 0 < x ) |
15 |
14
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> 0 < x ) |
16 |
13 15
|
eqbrtrd |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` ( A - A ) ) < x ) |
17 |
16
|
ralrimivw |
|- ( ( ph /\ x e. RR+ ) -> A. k e. Z ( abs ` ( A - A ) ) < x ) |
18 |
|
fveq2 |
|- ( j = M -> ( ZZ>= ` j ) = ( ZZ>= ` M ) ) |
19 |
18 1
|
eqtr4di |
|- ( j = M -> ( ZZ>= ` j ) = Z ) |
20 |
19
|
raleqdv |
|- ( j = M -> ( A. k e. ( ZZ>= ` j ) ( abs ` ( A - A ) ) < x <-> A. k e. Z ( abs ` ( A - A ) ) < x ) ) |
21 |
20
|
rspcev |
|- ( ( M e. Z /\ A. k e. Z ( abs ` ( A - A ) ) < x ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( A - A ) ) < x ) |
22 |
8 17 21
|
syl2an2r |
|- ( ( ph /\ x e. RR+ ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( A - A ) ) < x ) |
23 |
22
|
ralrimiva |
|- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( A - A ) ) < x ) |
24 |
4
|
adantr |
|- ( ( ph /\ k e. Z ) -> A e. CC ) |
25 |
1 2 3 5 4 24
|
clim2c |
|- ( ph -> ( F ~~> A <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( A - A ) ) < x ) ) |
26 |
23 25
|
mpbird |
|- ( ph -> F ~~> A ) |