| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climconst2.1 |
|- ( ZZ>= ` M ) C_ Z |
| 2 |
|
climconst2.2 |
|- Z e. _V |
| 3 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
| 4 |
|
simpr |
|- ( ( A e. CC /\ M e. ZZ ) -> M e. ZZ ) |
| 5 |
|
snex |
|- { A } e. _V |
| 6 |
2 5
|
xpex |
|- ( Z X. { A } ) e. _V |
| 7 |
6
|
a1i |
|- ( ( A e. CC /\ M e. ZZ ) -> ( Z X. { A } ) e. _V ) |
| 8 |
|
simpl |
|- ( ( A e. CC /\ M e. ZZ ) -> A e. CC ) |
| 9 |
1
|
sseli |
|- ( k e. ( ZZ>= ` M ) -> k e. Z ) |
| 10 |
|
fvconst2g |
|- ( ( A e. CC /\ k e. Z ) -> ( ( Z X. { A } ) ` k ) = A ) |
| 11 |
8 9 10
|
syl2an |
|- ( ( ( A e. CC /\ M e. ZZ ) /\ k e. ( ZZ>= ` M ) ) -> ( ( Z X. { A } ) ` k ) = A ) |
| 12 |
3 4 7 8 11
|
climconst |
|- ( ( A e. CC /\ M e. ZZ ) -> ( Z X. { A } ) ~~> A ) |