Step |
Hyp |
Ref |
Expression |
1 |
|
climconst2.1 |
|- ( ZZ>= ` M ) C_ Z |
2 |
|
climconst2.2 |
|- Z e. _V |
3 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
4 |
|
simpr |
|- ( ( A e. CC /\ M e. ZZ ) -> M e. ZZ ) |
5 |
|
snex |
|- { A } e. _V |
6 |
2 5
|
xpex |
|- ( Z X. { A } ) e. _V |
7 |
6
|
a1i |
|- ( ( A e. CC /\ M e. ZZ ) -> ( Z X. { A } ) e. _V ) |
8 |
|
simpl |
|- ( ( A e. CC /\ M e. ZZ ) -> A e. CC ) |
9 |
1
|
sseli |
|- ( k e. ( ZZ>= ` M ) -> k e. Z ) |
10 |
|
fvconst2g |
|- ( ( A e. CC /\ k e. Z ) -> ( ( Z X. { A } ) ` k ) = A ) |
11 |
8 9 10
|
syl2an |
|- ( ( ( A e. CC /\ M e. ZZ ) /\ k e. ( ZZ>= ` M ) ) -> ( ( Z X. { A } ) ` k ) = A ) |
12 |
3 4 7 8 11
|
climconst |
|- ( ( A e. CC /\ M e. ZZ ) -> ( Z X. { A } ) ~~> A ) |