Description: A constant sequence converges to its value. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | climconstmpt.m | |- ( ph -> M e. ZZ ) |
|
climconstmpt.z | |- Z = ( ZZ>= ` M ) |
||
climconstmpt.a | |- ( ph -> A e. CC ) |
||
Assertion | climconstmpt | |- ( ph -> ( x e. Z |-> A ) ~~> A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climconstmpt.m | |- ( ph -> M e. ZZ ) |
|
2 | climconstmpt.z | |- Z = ( ZZ>= ` M ) |
|
3 | climconstmpt.a | |- ( ph -> A e. CC ) |
|
4 | fconstmpt | |- ( Z X. { A } ) = ( x e. Z |-> A ) |
|
5 | 2 | eqcomi | |- ( ZZ>= ` M ) = Z |
6 | ssid | |- Z C_ Z |
|
7 | 5 6 | eqsstri | |- ( ZZ>= ` M ) C_ Z |
8 | 2 | fvexi | |- Z e. _V |
9 | 7 8 | climconst2 | |- ( ( A e. CC /\ M e. ZZ ) -> ( Z X. { A } ) ~~> A ) |
10 | 3 1 9 | syl2anc | |- ( ph -> ( Z X. { A } ) ~~> A ) |
11 | 4 10 | eqbrtrrid | |- ( ph -> ( x e. Z |-> A ) ~~> A ) |