Description: A constant sequence converges to its value. (Contributed by Glauco Siliprandi, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climconstmpt.m | |- ( ph -> M e. ZZ ) | |
| climconstmpt.z | |- Z = ( ZZ>= ` M ) | ||
| climconstmpt.a | |- ( ph -> A e. CC ) | ||
| Assertion | climconstmpt | |- ( ph -> ( x e. Z |-> A ) ~~> A ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | climconstmpt.m | |- ( ph -> M e. ZZ ) | |
| 2 | climconstmpt.z | |- Z = ( ZZ>= ` M ) | |
| 3 | climconstmpt.a | |- ( ph -> A e. CC ) | |
| 4 | fconstmpt |  |-  ( Z X. { A } ) = ( x e. Z |-> A ) | |
| 5 | 2 | eqcomi | |- ( ZZ>= ` M ) = Z | 
| 6 | ssid | |- Z C_ Z | |
| 7 | 5 6 | eqsstri | |- ( ZZ>= ` M ) C_ Z | 
| 8 | 2 | fvexi | |- Z e. _V | 
| 9 | 7 8 | climconst2 |  |-  ( ( A e. CC /\ M e. ZZ ) -> ( Z X. { A } ) ~~> A ) | 
| 10 | 3 1 9 | syl2anc |  |-  ( ph -> ( Z X. { A } ) ~~> A ) | 
| 11 | 4 10 | eqbrtrrid | |- ( ph -> ( x e. Z |-> A ) ~~> A ) |