Metamath Proof Explorer


Theorem climconstmpt

Description: A constant sequence converges to its value. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Hypotheses climconstmpt.m
|- ( ph -> M e. ZZ )
climconstmpt.z
|- Z = ( ZZ>= ` M )
climconstmpt.a
|- ( ph -> A e. CC )
Assertion climconstmpt
|- ( ph -> ( x e. Z |-> A ) ~~> A )

Proof

Step Hyp Ref Expression
1 climconstmpt.m
 |-  ( ph -> M e. ZZ )
2 climconstmpt.z
 |-  Z = ( ZZ>= ` M )
3 climconstmpt.a
 |-  ( ph -> A e. CC )
4 fconstmpt
 |-  ( Z X. { A } ) = ( x e. Z |-> A )
5 2 eqcomi
 |-  ( ZZ>= ` M ) = Z
6 ssid
 |-  Z C_ Z
7 5 6 eqsstri
 |-  ( ZZ>= ` M ) C_ Z
8 2 fvexi
 |-  Z e. _V
9 7 8 climconst2
 |-  ( ( A e. CC /\ M e. ZZ ) -> ( Z X. { A } ) ~~> A )
10 3 1 9 syl2anc
 |-  ( ph -> ( Z X. { A } ) ~~> A )
11 4 10 eqbrtrrid
 |-  ( ph -> ( x e. Z |-> A ) ~~> A )