Step |
Hyp |
Ref |
Expression |
1 |
|
climdivf.1 |
|- F/ k ph |
2 |
|
climdivf.2 |
|- F/_ k F |
3 |
|
climdivf.3 |
|- F/_ k G |
4 |
|
climdivf.4 |
|- F/_ k H |
5 |
|
climdivf.5 |
|- Z = ( ZZ>= ` M ) |
6 |
|
climdivf.6 |
|- ( ph -> M e. ZZ ) |
7 |
|
climdivf.7 |
|- ( ph -> F ~~> A ) |
8 |
|
climdivf.8 |
|- ( ph -> H e. X ) |
9 |
|
climdivf.9 |
|- ( ph -> G ~~> B ) |
10 |
|
climdivf.10 |
|- ( ph -> B =/= 0 ) |
11 |
|
climdivf.11 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
12 |
|
climdivf.12 |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) ) |
13 |
|
climdivf.13 |
|- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) / ( G ` k ) ) ) |
14 |
|
nfmpt1 |
|- F/_ k ( k e. Z |-> ( 1 / ( G ` k ) ) ) |
15 |
|
simpr |
|- ( ( ph /\ k e. Z ) -> k e. Z ) |
16 |
12
|
eldifad |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC ) |
17 |
|
eldifsni |
|- ( ( G ` k ) e. ( CC \ { 0 } ) -> ( G ` k ) =/= 0 ) |
18 |
12 17
|
syl |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) =/= 0 ) |
19 |
16 18
|
reccld |
|- ( ( ph /\ k e. Z ) -> ( 1 / ( G ` k ) ) e. CC ) |
20 |
|
eqid |
|- ( k e. Z |-> ( 1 / ( G ` k ) ) ) = ( k e. Z |-> ( 1 / ( G ` k ) ) ) |
21 |
20
|
fvmpt2 |
|- ( ( k e. Z /\ ( 1 / ( G ` k ) ) e. CC ) -> ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) = ( 1 / ( G ` k ) ) ) |
22 |
15 19 21
|
syl2anc |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) = ( 1 / ( G ` k ) ) ) |
23 |
5
|
fvexi |
|- Z e. _V |
24 |
23
|
mptex |
|- ( k e. Z |-> ( 1 / ( G ` k ) ) ) e. _V |
25 |
24
|
a1i |
|- ( ph -> ( k e. Z |-> ( 1 / ( G ` k ) ) ) e. _V ) |
26 |
1 3 14 5 6 9 10 12 22 25
|
climrecf |
|- ( ph -> ( k e. Z |-> ( 1 / ( G ` k ) ) ) ~~> ( 1 / B ) ) |
27 |
22 19
|
eqeltrd |
|- ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) e. CC ) |
28 |
11 16 18
|
divrecd |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) / ( G ` k ) ) = ( ( F ` k ) x. ( 1 / ( G ` k ) ) ) ) |
29 |
22
|
eqcomd |
|- ( ( ph /\ k e. Z ) -> ( 1 / ( G ` k ) ) = ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) ) |
30 |
29
|
oveq2d |
|- ( ( ph /\ k e. Z ) -> ( ( F ` k ) x. ( 1 / ( G ` k ) ) ) = ( ( F ` k ) x. ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) ) ) |
31 |
13 28 30
|
3eqtrd |
|- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) ) ) |
32 |
1 2 14 4 5 6 7 8 26 11 27 31
|
climmulf |
|- ( ph -> H ~~> ( A x. ( 1 / B ) ) ) |
33 |
|
climcl |
|- ( F ~~> A -> A e. CC ) |
34 |
7 33
|
syl |
|- ( ph -> A e. CC ) |
35 |
|
climcl |
|- ( G ~~> B -> B e. CC ) |
36 |
9 35
|
syl |
|- ( ph -> B e. CC ) |
37 |
34 36 10
|
divrecd |
|- ( ph -> ( A / B ) = ( A x. ( 1 / B ) ) ) |
38 |
32 37
|
breqtrrd |
|- ( ph -> H ~~> ( A / B ) ) |