Metamath Proof Explorer


Theorem climdivf

Description: Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017)

Ref Expression
Hypotheses climdivf.1
|- F/ k ph
climdivf.2
|- F/_ k F
climdivf.3
|- F/_ k G
climdivf.4
|- F/_ k H
climdivf.5
|- Z = ( ZZ>= ` M )
climdivf.6
|- ( ph -> M e. ZZ )
climdivf.7
|- ( ph -> F ~~> A )
climdivf.8
|- ( ph -> H e. X )
climdivf.9
|- ( ph -> G ~~> B )
climdivf.10
|- ( ph -> B =/= 0 )
climdivf.11
|- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
climdivf.12
|- ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) )
climdivf.13
|- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) / ( G ` k ) ) )
Assertion climdivf
|- ( ph -> H ~~> ( A / B ) )

Proof

Step Hyp Ref Expression
1 climdivf.1
 |-  F/ k ph
2 climdivf.2
 |-  F/_ k F
3 climdivf.3
 |-  F/_ k G
4 climdivf.4
 |-  F/_ k H
5 climdivf.5
 |-  Z = ( ZZ>= ` M )
6 climdivf.6
 |-  ( ph -> M e. ZZ )
7 climdivf.7
 |-  ( ph -> F ~~> A )
8 climdivf.8
 |-  ( ph -> H e. X )
9 climdivf.9
 |-  ( ph -> G ~~> B )
10 climdivf.10
 |-  ( ph -> B =/= 0 )
11 climdivf.11
 |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC )
12 climdivf.12
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. ( CC \ { 0 } ) )
13 climdivf.13
 |-  ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) / ( G ` k ) ) )
14 nfmpt1
 |-  F/_ k ( k e. Z |-> ( 1 / ( G ` k ) ) )
15 simpr
 |-  ( ( ph /\ k e. Z ) -> k e. Z )
16 12 eldifad
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) e. CC )
17 eldifsni
 |-  ( ( G ` k ) e. ( CC \ { 0 } ) -> ( G ` k ) =/= 0 )
18 12 17 syl
 |-  ( ( ph /\ k e. Z ) -> ( G ` k ) =/= 0 )
19 16 18 reccld
 |-  ( ( ph /\ k e. Z ) -> ( 1 / ( G ` k ) ) e. CC )
20 eqid
 |-  ( k e. Z |-> ( 1 / ( G ` k ) ) ) = ( k e. Z |-> ( 1 / ( G ` k ) ) )
21 20 fvmpt2
 |-  ( ( k e. Z /\ ( 1 / ( G ` k ) ) e. CC ) -> ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) = ( 1 / ( G ` k ) ) )
22 15 19 21 syl2anc
 |-  ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) = ( 1 / ( G ` k ) ) )
23 5 fvexi
 |-  Z e. _V
24 23 mptex
 |-  ( k e. Z |-> ( 1 / ( G ` k ) ) ) e. _V
25 24 a1i
 |-  ( ph -> ( k e. Z |-> ( 1 / ( G ` k ) ) ) e. _V )
26 1 3 14 5 6 9 10 12 22 25 climrecf
 |-  ( ph -> ( k e. Z |-> ( 1 / ( G ` k ) ) ) ~~> ( 1 / B ) )
27 22 19 eqeltrd
 |-  ( ( ph /\ k e. Z ) -> ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) e. CC )
28 11 16 18 divrecd
 |-  ( ( ph /\ k e. Z ) -> ( ( F ` k ) / ( G ` k ) ) = ( ( F ` k ) x. ( 1 / ( G ` k ) ) ) )
29 22 eqcomd
 |-  ( ( ph /\ k e. Z ) -> ( 1 / ( G ` k ) ) = ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) )
30 29 oveq2d
 |-  ( ( ph /\ k e. Z ) -> ( ( F ` k ) x. ( 1 / ( G ` k ) ) ) = ( ( F ` k ) x. ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) ) )
31 13 28 30 3eqtrd
 |-  ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) x. ( ( k e. Z |-> ( 1 / ( G ` k ) ) ) ` k ) ) )
32 1 2 14 4 5 6 7 8 26 11 27 31 climmulf
 |-  ( ph -> H ~~> ( A x. ( 1 / B ) ) )
33 climcl
 |-  ( F ~~> A -> A e. CC )
34 7 33 syl
 |-  ( ph -> A e. CC )
35 climcl
 |-  ( G ~~> B -> B e. CC )
36 9 35 syl
 |-  ( ph -> B e. CC )
37 34 36 10 divrecd
 |-  ( ph -> ( A / B ) = ( A x. ( 1 / B ) ) )
38 32 37 breqtrrd
 |-  ( ph -> H ~~> ( A / B ) )