Step |
Hyp |
Ref |
Expression |
1 |
|
climeldmeqmpt.k |
|- F/ k ph |
2 |
|
climeldmeqmpt.m |
|- ( ph -> M e. ZZ ) |
3 |
|
climeldmeqmpt.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
climeldmeqmpt.a |
|- ( ph -> A e. R ) |
5 |
|
climeldmeqmpt.i |
|- ( ph -> Z C_ A ) |
6 |
|
climeldmeqmpt.b |
|- ( ( ph /\ k e. A ) -> B e. V ) |
7 |
|
climeldmeqmpt.t |
|- ( ph -> C e. S ) |
8 |
|
climeldmeqmpt.l |
|- ( ph -> Z C_ C ) |
9 |
|
climeldmeqmpt.c |
|- ( ( ph /\ k e. C ) -> D e. W ) |
10 |
|
climeldmeqmpt.e |
|- ( ( ph /\ k e. Z ) -> B = D ) |
11 |
4
|
mptexd |
|- ( ph -> ( k e. A |-> B ) e. _V ) |
12 |
7
|
mptexd |
|- ( ph -> ( k e. C |-> D ) e. _V ) |
13 |
|
nfv |
|- F/ k j e. Z |
14 |
1 13
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
15 |
|
nfcsb1v |
|- F/_ k [_ j / k ]_ B |
16 |
|
nfcv |
|- F/_ k j |
17 |
16
|
nfcsb1 |
|- F/_ k [_ j / k ]_ D |
18 |
15 17
|
nfeq |
|- F/ k [_ j / k ]_ B = [_ j / k ]_ D |
19 |
14 18
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> [_ j / k ]_ B = [_ j / k ]_ D ) |
20 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
21 |
20
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
22 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
23 |
|
csbeq1a |
|- ( k = j -> D = [_ j / k ]_ D ) |
24 |
22 23
|
eqeq12d |
|- ( k = j -> ( B = D <-> [_ j / k ]_ B = [_ j / k ]_ D ) ) |
25 |
21 24
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> B = D ) <-> ( ( ph /\ j e. Z ) -> [_ j / k ]_ B = [_ j / k ]_ D ) ) ) |
26 |
19 25 10
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> [_ j / k ]_ B = [_ j / k ]_ D ) |
27 |
5
|
sselda |
|- ( ( ph /\ j e. Z ) -> j e. A ) |
28 |
|
nfv |
|- F/ k j e. A |
29 |
1 28
|
nfan |
|- F/ k ( ph /\ j e. A ) |
30 |
|
nfcv |
|- F/_ k V |
31 |
15 30
|
nfel |
|- F/ k [_ j / k ]_ B e. V |
32 |
29 31
|
nfim |
|- F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. V ) |
33 |
|
eleq1w |
|- ( k = j -> ( k e. A <-> j e. A ) ) |
34 |
33
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) ) |
35 |
22
|
eleq1d |
|- ( k = j -> ( B e. V <-> [_ j / k ]_ B e. V ) ) |
36 |
34 35
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. A ) -> B e. V ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. V ) ) ) |
37 |
32 36 6
|
chvarfv |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. V ) |
38 |
27 37
|
syldan |
|- ( ( ph /\ j e. Z ) -> [_ j / k ]_ B e. V ) |
39 |
16
|
nfcsb1 |
|- F/_ k [_ j / k ]_ B |
40 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
41 |
16 39 22 40
|
fvmptf |
|- ( ( j e. A /\ [_ j / k ]_ B e. V ) -> ( ( k e. A |-> B ) ` j ) = [_ j / k ]_ B ) |
42 |
27 38 41
|
syl2anc |
|- ( ( ph /\ j e. Z ) -> ( ( k e. A |-> B ) ` j ) = [_ j / k ]_ B ) |
43 |
8
|
sselda |
|- ( ( ph /\ j e. Z ) -> j e. C ) |
44 |
|
nfv |
|- F/ k j e. C |
45 |
1 44
|
nfan |
|- F/ k ( ph /\ j e. C ) |
46 |
|
nfcv |
|- F/_ k W |
47 |
17 46
|
nfel |
|- F/ k [_ j / k ]_ D e. W |
48 |
45 47
|
nfim |
|- F/ k ( ( ph /\ j e. C ) -> [_ j / k ]_ D e. W ) |
49 |
|
eleq1w |
|- ( k = j -> ( k e. C <-> j e. C ) ) |
50 |
49
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. C ) <-> ( ph /\ j e. C ) ) ) |
51 |
23
|
eleq1d |
|- ( k = j -> ( D e. W <-> [_ j / k ]_ D e. W ) ) |
52 |
50 51
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. C ) -> D e. W ) <-> ( ( ph /\ j e. C ) -> [_ j / k ]_ D e. W ) ) ) |
53 |
48 52 9
|
chvarfv |
|- ( ( ph /\ j e. C ) -> [_ j / k ]_ D e. W ) |
54 |
43 53
|
syldan |
|- ( ( ph /\ j e. Z ) -> [_ j / k ]_ D e. W ) |
55 |
|
eqid |
|- ( k e. C |-> D ) = ( k e. C |-> D ) |
56 |
16 17 23 55
|
fvmptf |
|- ( ( j e. C /\ [_ j / k ]_ D e. W ) -> ( ( k e. C |-> D ) ` j ) = [_ j / k ]_ D ) |
57 |
43 54 56
|
syl2anc |
|- ( ( ph /\ j e. Z ) -> ( ( k e. C |-> D ) ` j ) = [_ j / k ]_ D ) |
58 |
26 42 57
|
3eqtr4d |
|- ( ( ph /\ j e. Z ) -> ( ( k e. A |-> B ) ` j ) = ( ( k e. C |-> D ) ` j ) ) |
59 |
3 11 12 2 58
|
climeldmeq |
|- ( ph -> ( ( k e. A |-> B ) e. dom ~~> <-> ( k e. C |-> D ) e. dom ~~> ) ) |