| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climeq.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
climeq.2 |
|- ( ph -> F e. V ) |
| 3 |
|
climeq.3 |
|- ( ph -> G e. W ) |
| 4 |
|
climeq.5 |
|- ( ph -> M e. ZZ ) |
| 5 |
|
climeq.6 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( G ` k ) ) |
| 6 |
1 4 2 5
|
clim2 |
|- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. y e. Z A. k e. ( ZZ>= ` y ) ( ( G ` k ) e. CC /\ ( abs ` ( ( G ` k ) - A ) ) < x ) ) ) ) |
| 7 |
|
eqidd |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( G ` k ) ) |
| 8 |
1 4 3 7
|
clim2 |
|- ( ph -> ( G ~~> A <-> ( A e. CC /\ A. x e. RR+ E. y e. Z A. k e. ( ZZ>= ` y ) ( ( G ` k ) e. CC /\ ( abs ` ( ( G ` k ) - A ) ) < x ) ) ) ) |
| 9 |
6 8
|
bitr4d |
|- ( ph -> ( F ~~> A <-> G ~~> A ) ) |