Step |
Hyp |
Ref |
Expression |
1 |
|
climeqf.p |
|- F/ k ph |
2 |
|
climeqf.k |
|- F/_ k F |
3 |
|
climeqf.n |
|- F/_ k G |
4 |
|
climeqf.m |
|- ( ph -> M e. ZZ ) |
5 |
|
climeqf.z |
|- Z = ( ZZ>= ` M ) |
6 |
|
climeqf.f |
|- ( ph -> F e. V ) |
7 |
|
climeqf.g |
|- ( ph -> G e. W ) |
8 |
|
climeqf.e |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( G ` k ) ) |
9 |
|
nfv |
|- F/ k j e. Z |
10 |
1 9
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
11 |
|
nfcv |
|- F/_ k j |
12 |
2 11
|
nffv |
|- F/_ k ( F ` j ) |
13 |
3 11
|
nffv |
|- F/_ k ( G ` j ) |
14 |
12 13
|
nfeq |
|- F/ k ( F ` j ) = ( G ` j ) |
15 |
10 14
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> ( F ` j ) = ( G ` j ) ) |
16 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
17 |
16
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
18 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
19 |
|
fveq2 |
|- ( k = j -> ( G ` k ) = ( G ` j ) ) |
20 |
18 19
|
eqeq12d |
|- ( k = j -> ( ( F ` k ) = ( G ` k ) <-> ( F ` j ) = ( G ` j ) ) ) |
21 |
17 20
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( F ` k ) = ( G ` k ) ) <-> ( ( ph /\ j e. Z ) -> ( F ` j ) = ( G ` j ) ) ) ) |
22 |
15 21 8
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) = ( G ` j ) ) |
23 |
5 6 7 4 22
|
climeq |
|- ( ph -> ( F ~~> A <-> G ~~> A ) ) |