Step |
Hyp |
Ref |
Expression |
1 |
|
climcl |
|- ( F ~~> A -> A e. CC ) |
2 |
|
breq2 |
|- ( y = A -> ( F ~~> y <-> F ~~> A ) ) |
3 |
2
|
spcegv |
|- ( A e. CC -> ( F ~~> A -> E. y F ~~> y ) ) |
4 |
1 3
|
mpcom |
|- ( F ~~> A -> E. y F ~~> y ) |
5 |
|
climuni |
|- ( ( F ~~> y /\ F ~~> x ) -> y = x ) |
6 |
5
|
gen2 |
|- A. y A. x ( ( F ~~> y /\ F ~~> x ) -> y = x ) |
7 |
|
nfv |
|- F/ y F ~~> x |
8 |
|
nfv |
|- F/ x F ~~> y |
9 |
|
breq2 |
|- ( x = y -> ( F ~~> x <-> F ~~> y ) ) |
10 |
7 8 9
|
cbveuw |
|- ( E! x F ~~> x <-> E! y F ~~> y ) |
11 |
|
breq2 |
|- ( y = x -> ( F ~~> y <-> F ~~> x ) ) |
12 |
11
|
eu4 |
|- ( E! y F ~~> y <-> ( E. y F ~~> y /\ A. y A. x ( ( F ~~> y /\ F ~~> x ) -> y = x ) ) ) |
13 |
10 12
|
bitri |
|- ( E! x F ~~> x <-> ( E. y F ~~> y /\ A. y A. x ( ( F ~~> y /\ F ~~> x ) -> y = x ) ) ) |
14 |
4 6 13
|
sylanblrc |
|- ( F ~~> A -> E! x F ~~> x ) |