Step |
Hyp |
Ref |
Expression |
1 |
|
climexp.1 |
|- F/ k ph |
2 |
|
climexp.2 |
|- F/_ k F |
3 |
|
climexp.3 |
|- F/_ k H |
4 |
|
climexp.4 |
|- Z = ( ZZ>= ` M ) |
5 |
|
climexp.5 |
|- ( ph -> M e. ZZ ) |
6 |
|
climexp.6 |
|- ( ph -> F : Z --> CC ) |
7 |
|
climexp.7 |
|- ( ph -> F ~~> A ) |
8 |
|
climexp.8 |
|- ( ph -> N e. NN0 ) |
9 |
|
climexp.9 |
|- ( ph -> H e. V ) |
10 |
|
climexp.10 |
|- ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) ^ N ) ) |
11 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
12 |
11
|
expcn |
|- ( N e. NN0 -> ( x e. CC |-> ( x ^ N ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
13 |
8 12
|
syl |
|- ( ph -> ( x e. CC |-> ( x ^ N ) ) e. ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) ) |
14 |
11
|
cncfcn1 |
|- ( CC -cn-> CC ) = ( ( TopOpen ` CCfld ) Cn ( TopOpen ` CCfld ) ) |
15 |
13 14
|
eleqtrrdi |
|- ( ph -> ( x e. CC |-> ( x ^ N ) ) e. ( CC -cn-> CC ) ) |
16 |
|
climcl |
|- ( F ~~> A -> A e. CC ) |
17 |
7 16
|
syl |
|- ( ph -> A e. CC ) |
18 |
4 5 15 6 7 17
|
climcncf |
|- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) ~~> ( ( x e. CC |-> ( x ^ N ) ) ` A ) ) |
19 |
|
eqidd |
|- ( ph -> ( x e. CC |-> ( x ^ N ) ) = ( x e. CC |-> ( x ^ N ) ) ) |
20 |
|
simpr |
|- ( ( ph /\ x = A ) -> x = A ) |
21 |
20
|
oveq1d |
|- ( ( ph /\ x = A ) -> ( x ^ N ) = ( A ^ N ) ) |
22 |
17 8
|
expcld |
|- ( ph -> ( A ^ N ) e. CC ) |
23 |
19 21 17 22
|
fvmptd |
|- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) ` A ) = ( A ^ N ) ) |
24 |
18 23
|
breqtrd |
|- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) ~~> ( A ^ N ) ) |
25 |
|
cnex |
|- CC e. _V |
26 |
25
|
mptex |
|- ( x e. CC |-> ( x ^ N ) ) e. _V |
27 |
4
|
fvexi |
|- Z e. _V |
28 |
|
fex |
|- ( ( F : Z --> CC /\ Z e. _V ) -> F e. _V ) |
29 |
6 27 28
|
sylancl |
|- ( ph -> F e. _V ) |
30 |
|
coexg |
|- ( ( ( x e. CC |-> ( x ^ N ) ) e. _V /\ F e. _V ) -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) e. _V ) |
31 |
26 29 30
|
sylancr |
|- ( ph -> ( ( x e. CC |-> ( x ^ N ) ) o. F ) e. _V ) |
32 |
|
eqidd |
|- ( ( ph /\ j e. Z ) -> ( x e. CC |-> ( x ^ N ) ) = ( x e. CC |-> ( x ^ N ) ) ) |
33 |
|
simpr |
|- ( ( ( ph /\ j e. Z ) /\ x = ( F ` j ) ) -> x = ( F ` j ) ) |
34 |
33
|
oveq1d |
|- ( ( ( ph /\ j e. Z ) /\ x = ( F ` j ) ) -> ( x ^ N ) = ( ( F ` j ) ^ N ) ) |
35 |
6
|
ffvelrnda |
|- ( ( ph /\ j e. Z ) -> ( F ` j ) e. CC ) |
36 |
8
|
adantr |
|- ( ( ph /\ j e. Z ) -> N e. NN0 ) |
37 |
35 36
|
expcld |
|- ( ( ph /\ j e. Z ) -> ( ( F ` j ) ^ N ) e. CC ) |
38 |
32 34 35 37
|
fvmptd |
|- ( ( ph /\ j e. Z ) -> ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` j ) ) = ( ( F ` j ) ^ N ) ) |
39 |
|
fvco3 |
|- ( ( F : Z --> CC /\ j e. Z ) -> ( ( ( x e. CC |-> ( x ^ N ) ) o. F ) ` j ) = ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` j ) ) ) |
40 |
6 39
|
sylan |
|- ( ( ph /\ j e. Z ) -> ( ( ( x e. CC |-> ( x ^ N ) ) o. F ) ` j ) = ( ( x e. CC |-> ( x ^ N ) ) ` ( F ` j ) ) ) |
41 |
|
nfv |
|- F/ k j e. Z |
42 |
1 41
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
43 |
|
nfcv |
|- F/_ k j |
44 |
3 43
|
nffv |
|- F/_ k ( H ` j ) |
45 |
2 43
|
nffv |
|- F/_ k ( F ` j ) |
46 |
|
nfcv |
|- F/_ k ^ |
47 |
|
nfcv |
|- F/_ k N |
48 |
45 46 47
|
nfov |
|- F/_ k ( ( F ` j ) ^ N ) |
49 |
44 48
|
nfeq |
|- F/ k ( H ` j ) = ( ( F ` j ) ^ N ) |
50 |
42 49
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) ^ N ) ) |
51 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
52 |
51
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
53 |
|
fveq2 |
|- ( k = j -> ( H ` k ) = ( H ` j ) ) |
54 |
|
fveq2 |
|- ( k = j -> ( F ` k ) = ( F ` j ) ) |
55 |
54
|
oveq1d |
|- ( k = j -> ( ( F ` k ) ^ N ) = ( ( F ` j ) ^ N ) ) |
56 |
53 55
|
eqeq12d |
|- ( k = j -> ( ( H ` k ) = ( ( F ` k ) ^ N ) <-> ( H ` j ) = ( ( F ` j ) ^ N ) ) ) |
57 |
52 56
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) ^ N ) ) <-> ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) ^ N ) ) ) ) |
58 |
50 57 10
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( F ` j ) ^ N ) ) |
59 |
38 40 58
|
3eqtr4rd |
|- ( ( ph /\ j e. Z ) -> ( H ` j ) = ( ( ( x e. CC |-> ( x ^ N ) ) o. F ) ` j ) ) |
60 |
4 9 31 5 59
|
climeq |
|- ( ph -> ( H ~~> ( A ^ N ) <-> ( ( x e. CC |-> ( x ^ N ) ) o. F ) ~~> ( A ^ N ) ) ) |
61 |
24 60
|
mpbird |
|- ( ph -> H ~~> ( A ^ N ) ) |