Step |
Hyp |
Ref |
Expression |
1 |
|
climfveq.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climfveq.2 |
|- ( ph -> F e. V ) |
3 |
|
climfveq.3 |
|- ( ph -> G e. W ) |
4 |
|
climfveq.4 |
|- ( ph -> M e. ZZ ) |
5 |
|
climfveq.5 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = ( G ` k ) ) |
6 |
|
climdm |
|- ( F e. dom ~~> <-> F ~~> ( ~~> ` F ) ) |
7 |
6
|
biimpi |
|- ( F e. dom ~~> -> F ~~> ( ~~> ` F ) ) |
8 |
7
|
adantl |
|- ( ( ph /\ F e. dom ~~> ) -> F ~~> ( ~~> ` F ) ) |
9 |
8 6
|
sylibr |
|- ( ( ph /\ F e. dom ~~> ) -> F e. dom ~~> ) |
10 |
1 2 3 4 5
|
climeldmeq |
|- ( ph -> ( F e. dom ~~> <-> G e. dom ~~> ) ) |
11 |
10
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> ( F e. dom ~~> <-> G e. dom ~~> ) ) |
12 |
9 11
|
mpbid |
|- ( ( ph /\ F e. dom ~~> ) -> G e. dom ~~> ) |
13 |
|
climdm |
|- ( G e. dom ~~> <-> G ~~> ( ~~> ` G ) ) |
14 |
12 13
|
sylib |
|- ( ( ph /\ F e. dom ~~> ) -> G ~~> ( ~~> ` G ) ) |
15 |
3
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> G e. W ) |
16 |
2
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> F e. V ) |
17 |
4
|
adantr |
|- ( ( ph /\ F e. dom ~~> ) -> M e. ZZ ) |
18 |
5
|
eqcomd |
|- ( ( ph /\ k e. Z ) -> ( G ` k ) = ( F ` k ) ) |
19 |
18
|
adantlr |
|- ( ( ( ph /\ F e. dom ~~> ) /\ k e. Z ) -> ( G ` k ) = ( F ` k ) ) |
20 |
1 15 16 17 19
|
climeq |
|- ( ( ph /\ F e. dom ~~> ) -> ( G ~~> ( ~~> ` G ) <-> F ~~> ( ~~> ` G ) ) ) |
21 |
14 20
|
mpbid |
|- ( ( ph /\ F e. dom ~~> ) -> F ~~> ( ~~> ` G ) ) |
22 |
|
climuni |
|- ( ( F ~~> ( ~~> ` F ) /\ F ~~> ( ~~> ` G ) ) -> ( ~~> ` F ) = ( ~~> ` G ) ) |
23 |
8 21 22
|
syl2anc |
|- ( ( ph /\ F e. dom ~~> ) -> ( ~~> ` F ) = ( ~~> ` G ) ) |
24 |
|
ndmfv |
|- ( -. F e. dom ~~> -> ( ~~> ` F ) = (/) ) |
25 |
24
|
adantl |
|- ( ( ph /\ -. F e. dom ~~> ) -> ( ~~> ` F ) = (/) ) |
26 |
|
simpr |
|- ( ( ph /\ -. F e. dom ~~> ) -> -. F e. dom ~~> ) |
27 |
10
|
adantr |
|- ( ( ph /\ -. F e. dom ~~> ) -> ( F e. dom ~~> <-> G e. dom ~~> ) ) |
28 |
26 27
|
mtbid |
|- ( ( ph /\ -. F e. dom ~~> ) -> -. G e. dom ~~> ) |
29 |
|
ndmfv |
|- ( -. G e. dom ~~> -> ( ~~> ` G ) = (/) ) |
30 |
28 29
|
syl |
|- ( ( ph /\ -. F e. dom ~~> ) -> ( ~~> ` G ) = (/) ) |
31 |
25 30
|
eqtr4d |
|- ( ( ph /\ -. F e. dom ~~> ) -> ( ~~> ` F ) = ( ~~> ` G ) ) |
32 |
23 31
|
pm2.61dan |
|- ( ph -> ( ~~> ` F ) = ( ~~> ` G ) ) |