Step |
Hyp |
Ref |
Expression |
1 |
|
climfveqmpt.k |
|- F/ k ph |
2 |
|
climfveqmpt.m |
|- ( ph -> M e. ZZ ) |
3 |
|
climfveqmpt.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
climfveqmpt.A |
|- ( ph -> A e. R ) |
5 |
|
climfveqmpt.i |
|- ( ph -> Z C_ A ) |
6 |
|
climfveqmpt.b |
|- ( ( ph /\ k e. A ) -> B e. V ) |
7 |
|
climfveqmpt.t |
|- ( ph -> C e. S ) |
8 |
|
climfveqmpt.l |
|- ( ph -> Z C_ C ) |
9 |
|
climfveqmpt.c |
|- ( ( ph /\ k e. C ) -> D e. W ) |
10 |
|
climfveqmpt.e |
|- ( ( ph /\ k e. Z ) -> B = D ) |
11 |
4
|
mptexd |
|- ( ph -> ( k e. A |-> B ) e. _V ) |
12 |
7
|
mptexd |
|- ( ph -> ( k e. C |-> D ) e. _V ) |
13 |
|
nfv |
|- F/ k j e. Z |
14 |
1 13
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
15 |
|
nfcv |
|- F/_ k j |
16 |
15
|
nfcsb1 |
|- F/_ k [_ j / k ]_ B |
17 |
15
|
nfcsb1 |
|- F/_ k [_ j / k ]_ D |
18 |
16 17
|
nfeq |
|- F/ k [_ j / k ]_ B = [_ j / k ]_ D |
19 |
14 18
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> [_ j / k ]_ B = [_ j / k ]_ D ) |
20 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
21 |
20
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
22 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
23 |
|
csbeq1a |
|- ( k = j -> D = [_ j / k ]_ D ) |
24 |
22 23
|
eqeq12d |
|- ( k = j -> ( B = D <-> [_ j / k ]_ B = [_ j / k ]_ D ) ) |
25 |
21 24
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> B = D ) <-> ( ( ph /\ j e. Z ) -> [_ j / k ]_ B = [_ j / k ]_ D ) ) ) |
26 |
19 25 10
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> [_ j / k ]_ B = [_ j / k ]_ D ) |
27 |
5
|
adantr |
|- ( ( ph /\ j e. Z ) -> Z C_ A ) |
28 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
29 |
27 28
|
sseldd |
|- ( ( ph /\ j e. Z ) -> j e. A ) |
30 |
|
simpr |
|- ( ( ph /\ j e. A ) -> j e. A ) |
31 |
|
nfv |
|- F/ k j e. A |
32 |
1 31
|
nfan |
|- F/ k ( ph /\ j e. A ) |
33 |
|
nfcv |
|- F/_ k V |
34 |
16 33
|
nfel |
|- F/ k [_ j / k ]_ B e. V |
35 |
32 34
|
nfim |
|- F/ k ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. V ) |
36 |
|
eleq1w |
|- ( k = j -> ( k e. A <-> j e. A ) ) |
37 |
36
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. A ) <-> ( ph /\ j e. A ) ) ) |
38 |
22
|
eleq1d |
|- ( k = j -> ( B e. V <-> [_ j / k ]_ B e. V ) ) |
39 |
37 38
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. A ) -> B e. V ) <-> ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. V ) ) ) |
40 |
35 39 6
|
chvarfv |
|- ( ( ph /\ j e. A ) -> [_ j / k ]_ B e. V ) |
41 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
42 |
15 16 22 41
|
fvmptf |
|- ( ( j e. A /\ [_ j / k ]_ B e. V ) -> ( ( k e. A |-> B ) ` j ) = [_ j / k ]_ B ) |
43 |
30 40 42
|
syl2anc |
|- ( ( ph /\ j e. A ) -> ( ( k e. A |-> B ) ` j ) = [_ j / k ]_ B ) |
44 |
29 43
|
syldan |
|- ( ( ph /\ j e. Z ) -> ( ( k e. A |-> B ) ` j ) = [_ j / k ]_ B ) |
45 |
8
|
adantr |
|- ( ( ph /\ j e. Z ) -> Z C_ C ) |
46 |
45 28
|
sseldd |
|- ( ( ph /\ j e. Z ) -> j e. C ) |
47 |
|
simpr |
|- ( ( ph /\ j e. C ) -> j e. C ) |
48 |
|
nfv |
|- F/ k j e. C |
49 |
1 48
|
nfan |
|- F/ k ( ph /\ j e. C ) |
50 |
|
nfcv |
|- F/_ k W |
51 |
17 50
|
nfel |
|- F/ k [_ j / k ]_ D e. W |
52 |
49 51
|
nfim |
|- F/ k ( ( ph /\ j e. C ) -> [_ j / k ]_ D e. W ) |
53 |
|
eleq1w |
|- ( k = j -> ( k e. C <-> j e. C ) ) |
54 |
53
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. C ) <-> ( ph /\ j e. C ) ) ) |
55 |
23
|
eleq1d |
|- ( k = j -> ( D e. W <-> [_ j / k ]_ D e. W ) ) |
56 |
54 55
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. C ) -> D e. W ) <-> ( ( ph /\ j e. C ) -> [_ j / k ]_ D e. W ) ) ) |
57 |
52 56 9
|
chvarfv |
|- ( ( ph /\ j e. C ) -> [_ j / k ]_ D e. W ) |
58 |
|
eqid |
|- ( k e. C |-> D ) = ( k e. C |-> D ) |
59 |
15 17 23 58
|
fvmptf |
|- ( ( j e. C /\ [_ j / k ]_ D e. W ) -> ( ( k e. C |-> D ) ` j ) = [_ j / k ]_ D ) |
60 |
47 57 59
|
syl2anc |
|- ( ( ph /\ j e. C ) -> ( ( k e. C |-> D ) ` j ) = [_ j / k ]_ D ) |
61 |
46 60
|
syldan |
|- ( ( ph /\ j e. Z ) -> ( ( k e. C |-> D ) ` j ) = [_ j / k ]_ D ) |
62 |
26 44 61
|
3eqtr4d |
|- ( ( ph /\ j e. Z ) -> ( ( k e. A |-> B ) ` j ) = ( ( k e. C |-> D ) ` j ) ) |
63 |
3 11 12 2 62
|
climfveq |
|- ( ph -> ( ~~> ` ( k e. A |-> B ) ) = ( ~~> ` ( k e. C |-> D ) ) ) |