Step |
Hyp |
Ref |
Expression |
1 |
|
climfveqmpt2.k |
|- F/ k ph |
2 |
|
climfveqmpt2.m |
|- ( ph -> M e. ZZ ) |
3 |
|
climfveqmpt2.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
climfveqmpt2.a |
|- ( ph -> A e. V ) |
5 |
|
climfveqmpt2.c |
|- ( ph -> B e. W ) |
6 |
|
climfveqmpt2.s |
|- ( ph -> Z C_ A ) |
7 |
|
climfveqmpt2.i |
|- ( ph -> Z C_ B ) |
8 |
|
climfveqmpt2.b |
|- ( ( ph /\ k e. Z ) -> C e. U ) |
9 |
|
nfmpt1 |
|- F/_ k ( k e. A |-> C ) |
10 |
|
nfmpt1 |
|- F/_ k ( k e. B |-> C ) |
11 |
4
|
mptexd |
|- ( ph -> ( k e. A |-> C ) e. _V ) |
12 |
5
|
mptexd |
|- ( ph -> ( k e. B |-> C ) e. _V ) |
13 |
6
|
sselda |
|- ( ( ph /\ k e. Z ) -> k e. A ) |
14 |
|
eqid |
|- ( k e. A |-> C ) = ( k e. A |-> C ) |
15 |
14
|
fvmpt2 |
|- ( ( k e. A /\ C e. U ) -> ( ( k e. A |-> C ) ` k ) = C ) |
16 |
13 8 15
|
syl2anc |
|- ( ( ph /\ k e. Z ) -> ( ( k e. A |-> C ) ` k ) = C ) |
17 |
7
|
sselda |
|- ( ( ph /\ k e. Z ) -> k e. B ) |
18 |
|
eqid |
|- ( k e. B |-> C ) = ( k e. B |-> C ) |
19 |
18
|
fvmpt2 |
|- ( ( k e. B /\ C e. U ) -> ( ( k e. B |-> C ) ` k ) = C ) |
20 |
17 8 19
|
syl2anc |
|- ( ( ph /\ k e. Z ) -> ( ( k e. B |-> C ) ` k ) = C ) |
21 |
16 20
|
eqtr4d |
|- ( ( ph /\ k e. Z ) -> ( ( k e. A |-> C ) ` k ) = ( ( k e. B |-> C ) ` k ) ) |
22 |
1 9 10 3 11 12 2 21
|
climfveqf |
|- ( ph -> ( ~~> ` ( k e. A |-> C ) ) = ( ~~> ` ( k e. B |-> C ) ) ) |