Step |
Hyp |
Ref |
Expression |
1 |
|
climfveqmpt3.k |
|- F/ k ph |
2 |
|
climfveqmpt3.m |
|- ( ph -> M e. ZZ ) |
3 |
|
climfveqmpt3.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
climfveqmpt3.a |
|- ( ph -> A e. V ) |
5 |
|
climfveqmpt3.c |
|- ( ph -> C e. W ) |
6 |
|
climfveqmpt3.i |
|- ( ph -> Z C_ A ) |
7 |
|
climfveqmpt3.s |
|- ( ph -> Z C_ C ) |
8 |
|
climfveqmpt3.b |
|- ( ( ph /\ k e. Z ) -> B e. U ) |
9 |
|
climfveqmpt3.d |
|- ( ( ph /\ k e. Z ) -> B = D ) |
10 |
4
|
mptexd |
|- ( ph -> ( k e. A |-> B ) e. _V ) |
11 |
5
|
mptexd |
|- ( ph -> ( k e. C |-> D ) e. _V ) |
12 |
|
nfv |
|- F/ k j e. Z |
13 |
1 12
|
nfan |
|- F/ k ( ph /\ j e. Z ) |
14 |
|
nfcv |
|- F/_ k j |
15 |
14
|
nfcsb1 |
|- F/_ k [_ j / k ]_ B |
16 |
14
|
nfcsb1 |
|- F/_ k [_ j / k ]_ D |
17 |
15 16
|
nfeq |
|- F/ k [_ j / k ]_ B = [_ j / k ]_ D |
18 |
13 17
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> [_ j / k ]_ B = [_ j / k ]_ D ) |
19 |
|
eleq1w |
|- ( k = j -> ( k e. Z <-> j e. Z ) ) |
20 |
19
|
anbi2d |
|- ( k = j -> ( ( ph /\ k e. Z ) <-> ( ph /\ j e. Z ) ) ) |
21 |
|
csbeq1a |
|- ( k = j -> B = [_ j / k ]_ B ) |
22 |
|
csbeq1a |
|- ( k = j -> D = [_ j / k ]_ D ) |
23 |
21 22
|
eqeq12d |
|- ( k = j -> ( B = D <-> [_ j / k ]_ B = [_ j / k ]_ D ) ) |
24 |
20 23
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> B = D ) <-> ( ( ph /\ j e. Z ) -> [_ j / k ]_ B = [_ j / k ]_ D ) ) ) |
25 |
18 24 9
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> [_ j / k ]_ B = [_ j / k ]_ D ) |
26 |
6
|
adantr |
|- ( ( ph /\ j e. Z ) -> Z C_ A ) |
27 |
|
simpr |
|- ( ( ph /\ j e. Z ) -> j e. Z ) |
28 |
26 27
|
sseldd |
|- ( ( ph /\ j e. Z ) -> j e. A ) |
29 |
|
nfcv |
|- F/_ k U |
30 |
15 29
|
nfel |
|- F/ k [_ j / k ]_ B e. U |
31 |
13 30
|
nfim |
|- F/ k ( ( ph /\ j e. Z ) -> [_ j / k ]_ B e. U ) |
32 |
21
|
eleq1d |
|- ( k = j -> ( B e. U <-> [_ j / k ]_ B e. U ) ) |
33 |
20 32
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ k e. Z ) -> B e. U ) <-> ( ( ph /\ j e. Z ) -> [_ j / k ]_ B e. U ) ) ) |
34 |
31 33 8
|
chvarfv |
|- ( ( ph /\ j e. Z ) -> [_ j / k ]_ B e. U ) |
35 |
|
eqid |
|- ( k e. A |-> B ) = ( k e. A |-> B ) |
36 |
14 15 21 35
|
fvmptf |
|- ( ( j e. A /\ [_ j / k ]_ B e. U ) -> ( ( k e. A |-> B ) ` j ) = [_ j / k ]_ B ) |
37 |
28 34 36
|
syl2anc |
|- ( ( ph /\ j e. Z ) -> ( ( k e. A |-> B ) ` j ) = [_ j / k ]_ B ) |
38 |
7
|
adantr |
|- ( ( ph /\ j e. Z ) -> Z C_ C ) |
39 |
38 27
|
sseldd |
|- ( ( ph /\ j e. Z ) -> j e. C ) |
40 |
25 34
|
eqeltrrd |
|- ( ( ph /\ j e. Z ) -> [_ j / k ]_ D e. U ) |
41 |
|
eqid |
|- ( k e. C |-> D ) = ( k e. C |-> D ) |
42 |
14 16 22 41
|
fvmptf |
|- ( ( j e. C /\ [_ j / k ]_ D e. U ) -> ( ( k e. C |-> D ) ` j ) = [_ j / k ]_ D ) |
43 |
39 40 42
|
syl2anc |
|- ( ( ph /\ j e. Z ) -> ( ( k e. C |-> D ) ` j ) = [_ j / k ]_ D ) |
44 |
25 37 43
|
3eqtr4d |
|- ( ( ph /\ j e. Z ) -> ( ( k e. A |-> B ) ` j ) = ( ( k e. C |-> D ) ` j ) ) |
45 |
3 10 11 2 44
|
climfveq |
|- ( ph -> ( ~~> ` ( k e. A |-> B ) ) = ( ~~> ` ( k e. C |-> D ) ) ) |