Step |
Hyp |
Ref |
Expression |
1 |
|
climi.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climi.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
climi.3 |
|- ( ph -> C e. RR+ ) |
4 |
|
climi.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
5 |
|
climi.5 |
|- ( ph -> F ~~> A ) |
6 |
|
breq2 |
|- ( x = C -> ( ( abs ` ( B - A ) ) < x <-> ( abs ` ( B - A ) ) < C ) ) |
7 |
6
|
anbi2d |
|- ( x = C -> ( ( B e. CC /\ ( abs ` ( B - A ) ) < x ) <-> ( B e. CC /\ ( abs ` ( B - A ) ) < C ) ) ) |
8 |
7
|
rexralbidv |
|- ( x = C -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < C ) ) ) |
9 |
|
climrel |
|- Rel ~~> |
10 |
9
|
brrelex1i |
|- ( F ~~> A -> F e. _V ) |
11 |
5 10
|
syl |
|- ( ph -> F e. _V ) |
12 |
1 2 11 4
|
clim2 |
|- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) ) |
13 |
5 12
|
mpbid |
|- ( ph -> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) |
14 |
13
|
simprd |
|- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) |
15 |
8 14 3
|
rspcdva |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < C ) ) |