| Step |
Hyp |
Ref |
Expression |
| 1 |
|
climi.1 |
|- Z = ( ZZ>= ` M ) |
| 2 |
|
climi.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
climi.3 |
|- ( ph -> C e. RR+ ) |
| 4 |
|
climi.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
| 5 |
|
climi.5 |
|- ( ph -> F ~~> A ) |
| 6 |
|
breq2 |
|- ( x = C -> ( ( abs ` ( B - A ) ) < x <-> ( abs ` ( B - A ) ) < C ) ) |
| 7 |
6
|
anbi2d |
|- ( x = C -> ( ( B e. CC /\ ( abs ` ( B - A ) ) < x ) <-> ( B e. CC /\ ( abs ` ( B - A ) ) < C ) ) ) |
| 8 |
7
|
rexralbidv |
|- ( x = C -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < C ) ) ) |
| 9 |
|
climrel |
|- Rel ~~> |
| 10 |
9
|
brrelex1i |
|- ( F ~~> A -> F e. _V ) |
| 11 |
5 10
|
syl |
|- ( ph -> F e. _V ) |
| 12 |
1 2 11 4
|
clim2 |
|- ( ph -> ( F ~~> A <-> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) ) |
| 13 |
5 12
|
mpbid |
|- ( ph -> ( A e. CC /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) ) |
| 14 |
13
|
simprd |
|- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < x ) ) |
| 15 |
8 14 3
|
rspcdva |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - A ) ) < C ) ) |