Step |
Hyp |
Ref |
Expression |
1 |
|
climi.1 |
|- Z = ( ZZ>= ` M ) |
2 |
|
climi.2 |
|- ( ph -> M e. ZZ ) |
3 |
|
climi.3 |
|- ( ph -> C e. RR+ ) |
4 |
|
climi.4 |
|- ( ( ph /\ k e. Z ) -> ( F ` k ) = B ) |
5 |
|
climi0.5 |
|- ( ph -> F ~~> 0 ) |
6 |
1 2 3 4 5
|
climi |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - 0 ) ) < C ) ) |
7 |
|
subid1 |
|- ( B e. CC -> ( B - 0 ) = B ) |
8 |
7
|
fveq2d |
|- ( B e. CC -> ( abs ` ( B - 0 ) ) = ( abs ` B ) ) |
9 |
8
|
breq1d |
|- ( B e. CC -> ( ( abs ` ( B - 0 ) ) < C <-> ( abs ` B ) < C ) ) |
10 |
9
|
biimpa |
|- ( ( B e. CC /\ ( abs ` ( B - 0 ) ) < C ) -> ( abs ` B ) < C ) |
11 |
10
|
ralimi |
|- ( A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - 0 ) ) < C ) -> A. k e. ( ZZ>= ` j ) ( abs ` B ) < C ) |
12 |
11
|
reximi |
|- ( E. j e. Z A. k e. ( ZZ>= ` j ) ( B e. CC /\ ( abs ` ( B - 0 ) ) < C ) -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < C ) |
13 |
6 12
|
syl |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` B ) < C ) |